• Title/Summary/Keyword: 수학화 형태

Search Result 135, Processing Time 0.031 seconds

The analysis and algebraic consideration on the rationalizing denominators in school mathematics (학교수학에서 제시하는 분모의 유리화 분석 및 대수적 고찰)

  • Choi Jihoon;Kim Inkyung
    • The Mathematical Education
    • /
    • v.62 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • The rationalizing denominators presented in the mathematics textbooks is being used in various places of school mathematics curriculum. However, according to some previous research on the rationalizing denominators in school mathematics, it seems that there is no clear explanation as to why rationalizing denominators is necessary and why it should be used. In addition, a previous research insists that most students know how to rationalize denominators but do not understand why it is necessary and important. To confirm this, we examined the rationalizing denominators presented in the 2015 revised mathematics curriculum as school mathematics. Then we also examined the rationalizing denominators algebraically as academic mathematics. In detail, we conducted an analysis on the rationalizing denominators presented in randomly selected three mathematics textbooks and teacher guidebooks for middle school third grade. Then the algebraic meaning of the rationalizing denominators was examined from a proper algebraic structure analysis. Based on this, we present alternative definitions of the rationalizing denominators which is suitable for school mathematics and academic mathematics. Finally, we also present the mathematical contents (irrationals of the special form can be algebraically interpreted as numbers in the standard form) that teachers should know when they teach the rationalizing denominators in school mathematics.

The Skeletonization of 2-Dimensional Image for Fuzzy Mathematical Morphology using Defuzzification (비퍼지화를 이용한 퍼지 수학적 형태학의 2차원 영상의 골격화)

  • Park, In-Kue;Lee, Wan-Bum
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • Based on similarities between fuzzy set theory and mathematical morphology, Grabish proposed a fuzzy morphology based on the Sugeno fuzzy integral. This paper proposes a fuzzy mathematical morphology based on the defuzzification of the fuzzy measure which corresponds to fuzzy integral. Its process makes a fuzzy set used as a measure of the inclusion of each fuzzy measure for subsets. To calculate such an integral a $\lambda$-fuzzy measure is defined which gives every subsets associated with the universe of discourse, a definite non-negative weight. Fast implementable definitions for erosion and dilation based on the fuzzy measure was given. An application for robust skeletonization of two-dimensional objects was presented. Simulation examples showed that the object reconstruction from their skeletal subsets that can be achieved by using the proposed was better than by using the binary mathematical morphology in most cases.

  • PDF

Math Teaching Method and Classroom Environment Preferred by Gifted High School Students (고등학교 영재 학생들이 선호하는 수학 수업형태와 수업환경)

  • Lee, Dae-Won;Koh, Ho-Kyoung;Yoo, Mi-Hyun
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.1
    • /
    • pp.23-37
    • /
    • 2012
  • The purpose of this study is to design a more satisfactory and efficient teaching strategy for the gifted by comparing teaching type and learning environment preferred by the gifted with that preferred by normal students. As a result, the following findings are obtained. First, while the normal class students show higher preference for clarification and organization, gifted students prefer for diversification and specialization. Second, with the respect to the gender-related forms of mathematics classroom environment, the overall female preference and the average score are higher, indicating significant difference in the area is only a psychological domain. Third, compared to the regular classroom, the gifted have significantly different preference for teaching method, classroom and teachers' attitude between in the gifted class and regular class.

A study on the practical methods of open teaching and loaming In mathematics education (문제해결력 신장을 위한 교수 학습 활동의 개별화 방안)

  • Lee Jeongjae
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1997
  • Children should have opportunities to experience problem solving individually with strategies for developing their problem solving abilities. To make an instructional design for individual teaming, problem solving activities were classified into categories like individual activities, individual activities within a group, and team teaching. A flow of teaching and teaming process was designed before, and concrete and semi-concrete materials were used in an experimental teaching, which was analysed in this research.

  • PDF

Categorization of Middle school students' Math Learning Style Preferences and Comparison of Academic Characteristics (중학생의 수학학습양식 선호유형의 범주화와 학습 특성 비교)

  • Paik, Hee Su
    • School Mathematics
    • /
    • v.15 no.1
    • /
    • pp.15-35
    • /
    • 2013
  • The purpose of the research is to categorize math learners into pattern through those tools that distinguish math learning style for middle school students. On the ground of survey for 976 middle school students, the fact that there are 16 different math learning style at the result of cluster analysis is confirmed and the results are compared and analyzed previous research. Also according to the each constituent of math learning style, dissimilarity of distribution about learner of different sexes and grades are analyzed. It's helpful to understanding the whole characteristics of learners regarding math learning to figure out their cognitive and affective learning styles through the tools to distinguish their math learning styles.

  • PDF

A Design of Teaching Unit to Foster Secondary pre-service Teachers' Mathematising Ability : Exploring the relationship between partition models and generalized fobonacci sequences (예비중등교사의 수학화 학습을 위한 교수단원의 설계: 분할모델과 일반화된 피보나치 수열 사이의 관계 탐구)

  • Kim, Jin-Hwan;Park, Kyo-Sik
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.3
    • /
    • pp.373-389
    • /
    • 2008
  • In this paper, we designed a teaching unit for the learning mathematization of secondary pre-service teachers through exploring the relationship between partition models and generalized fibonacci sequences. We first suggested some problems which guide pre-service teachers to make phainomenon for organizing nooumenon. Pre-service teachers should find patterns from partitions for various partition models by solving the problems and also form formulas front the patterns. A series of these processes organize nooumenon. Futhermore they should relate the formulas to generalized fibonacci sequences. Finding these relationships is a new mathematical material. Based on developing these mathematical materials, pre-service teachers can be experienced mathematising as real practices.

  • PDF

Design and implementation of web courseware applying ARCS model for Problem Solving Learning (ARCS 이론을 적용한 문제해결학습 코스웨어 개발 및 적용)

  • Lee, Hae-Woo;Han, Kyu-Jung
    • 한국정보교육학회:학술대회논문집
    • /
    • 2007.01a
    • /
    • pp.287-292
    • /
    • 2007
  • 본 연구는 켈러의 ARCS(Attention, Relevance, Confidence, Satisfaction) 동기화 이론을 수학과 문제해결학습에 적용하여 학생들의 지적 수준과 능력에 맞는 동기유발 요소로 실제 학습동기를 유발시키고, 수학과 학습에 흥미와 관심을 갖도록 하는 코스웨어를 개발 및 적용하여 그 효과를 입증하는 데에 목적이 있다. 이를 위하여 ARCS 이론을 적용하여, 실생활 속에서 문제를 인식하고 동기화를 촉진시킬 수 있는 동영상 자료와 플래시 자료를 포함한 '동기유발자료'와 문제해결과정을 다양한 형태와 방법으로 연습할 수 있는 '스스로 공부해요' 메뉴를 포함한 코스웨어를 개발하였다. 개발된 코스웨어는 학생들의 관심과 흥미를 충분히 반영하여 스스로 조작하며 학습할 수 있도록 학습자 중심형태로 개발하였다.

  • PDF

A Study of Administrating the Mathematical Circle in Whole-day Club Activities in a Middle School (중학교 전일제 계발활동에서 수학반 운영에 대한 연구)

  • Han In-Ki;Kim Hyun-Jeong
    • Communications of Mathematical Education
    • /
    • v.20 no.3 s.27
    • /
    • pp.391-405
    • /
    • 2006
  • In this paper we study on administration system and student's activities in whole-day club activities. As a result of this study we propose teaching methods, mathematical program for the year, and concreate teaching-learning materials for mathematical circle in whole-day club activities.

  • PDF

Analysis on characteristics of shape indices through the comparison of regional woodland patches (지역별 산림패치 비교를 통한 형태지수의 특성분석)

  • Kim, Keun-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • 지난 수십 년 동안 형태지수는 패치의 복잡성을 정량화하여 생물종 다양성 보존과 같은 경관생태계획에 활용되어 왔다. 지역계획 연구자들이나 정책결정자들에게 경관구조와 패턴을 정량화하는 경관생태지수는 대상지역을 모니터링할 수 있는 하나의 수단으로 활용되어 왔다. 그러나 경관생태지수관련 연구를 살펴보면 연구 목적 및 범위에 따라 활용하는 경관생태지수의 종류가 매우 다양하고 복잡한 것을 알 수 있다. 또한 연구목적에 적합한 경관생태지수를 선정하는 것은 복잡한 수학분석과 함께 많은 주의가 필요한 것을 알 수 있다. 따라서 본 연구에서는 형태지수들을 도시지역, 도시외곽지역, 농촌지역 그리고 산림지역 등 4군데 사례지역에 적용하여 그 결과를 통해 형태지수들의 특성을 살펴보았다. 그 결과, 평균형태지수값(MSI)에서는 도시외곽지역이 가장 높게 나타났고, 평균프랙텔차원지수(MPFD)에서는 농촌지역이 높게 나타났다. 넓은 면적을 가진 패치에 가중점을 고려한 평균형태지수값(AWMSI)과 평균프랙텔차원지수값(AWMPFD)에서는 산림지역이 가장 높게 나타났다. 사용한 네 가지 형태지수값의 순위가 4군데 사례지역에서 다르게 나타났다. 특히 둘레와 면적의 로그전환을 이용하고 있는 프랙텔차원지수들의 경우, 도시와 도시외곽지역의 MPFD값은 같고, 도시외곽지역, 농촌지역과 산림지역의 AWMPFD값 차이는 적어 순위 분별력이 떨어졌다. 따라서 넓은 면적을 가진 패치에 가중점을 고려한 평균형태지수(AWMSI)가 지역별 산림패치의 복잡성을 잘 정량화할 수 있음을 본 연구결과에서 보여주고 있다.

A study on the hybrid privacy-preserving techniques by secure multi-party computation and randomization (다자간 계산과 랜덤화를 복합적으로 사용한 프라이버시 보호 기술에 관한 연구)

  • Kim, Jong-Tae;Kang, Ju-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.1061-1064
    • /
    • 2008
  • SMC로 불리는 안전한 다자간 계산 프로토콜은 이론적으로 완벽한 프라이버시 보호 기능 및 데이터 정확성을 가지고 있지만 현재의 컴퓨팅 환경에서는 구현이 불가능할 정도로 비효율적이다. 매우 효율적이어서 실용화 되어 있는 랜덤화 기법은 상대적으로 낮은 수준의 프라이버시 보호 기능을 지니고 있다. 최근 SMC와 랜덤화 기법을 적절히 혼합한 형태의 프라이버시 보호 기술이 Teng-Du(2007)에 의해서 제안되었다. 본 논문에서 우리는 Teng-Du의 기법을 면밀히 분석하여 새롭게 구현한 연구 결과를 제시한다. SMC 기술로는 Vaidya-Clifton의 스칼라곱 프로토콜을 채택하고, Agrawal-Jayant-Haritsa가 제안한 랜덤대치 기법을 랜덤화 기술로 선택하여 복합적으로 사용한 프라이버시 보호 기법을 제안한다.