여러 사람에게서 생체신호를 측정하여 특징을 추출하는 경우 피실험자마다 다른 신체적 또는 생리학적 특징에 의해 같은 클래스로 분류하고 싶어도 다른 클래스로 잘못 분류되는 경우가 발생한다. 이와 같이 N 명의 사람에게서 얻은 생체신호로 M 개의 클래스를 분류하도록 훈련하여 새로운 사람의 생체신호를 M 개의 클래스로 분류하고자 할 때 발생하는 문제를 해결하기 위한 방법으로 피실험자 독립적인 클러스터링 방법을 제안하고자 한다. 이를 위한 수학적 기반으로 동치관계들의 교집합과 합집합에 근거한 새로운 연산자를 정의하고 이를 이용하여 최대 공통 클러스터(Largest Common Cluster, LCC)라는 새로운 개념을 정의한다 이는 여러 사람에게서 얻은 정보에서 최대한 공통의 성질을 갖는 것들을 찾아내는 수학적이고 체계적인 방법이라 할 수 있다. 따라서 일단 LCC를 찾아내면 이를 특징(feature)으로 삼아 패턴분류기를 설계하면 여러 사람에게 적용가능한 생체신호 인식기를 설계할 수 있게 된다.
사회가 변화함에 따라 수학교육과정도 변화를 거듭하고 있으며, 이러한 변화에 잘 대처하기 위해서 교사는 수학교육의 방향에 대한 깊이 있는 성찰과 함께 수학, 교육학, 심리학 등 수학교육과 관련된 학문에 대한 이해가 필요하다. 이러한 교사에 대한 시대적인 요구에 능동적으로 대처하는 방안으로 Wittmann(1984)은 수학교과의 특성상 변하지 않는 요소들을 교수단위(Teaching Units)라 하고, 수학교육을 통합시키는 개념으로 교수단위이론으로 제시하였다. 교수단위는 수학에서 가르쳐야 할 내용들을 목적, 자료, 활동, 배경 등의 4요소에 따라 작은 단위로 조직화한 것으로, 이를 통해 수학연구자나 교사는 가르쳐야 할 내용에 대한 구조적인 이해와 체계적인 조직화를 도모할 수 있게 되어 나아가 사회의 변화에 대응할 수 있게 된다. 본 연구에서는 2007년 개정 수학과 교육과정 도형영역의 교수단위를 학년별로 추출하고, 추출된 교수단위의 특징과 제목을 분석하였다. 이를 통해 교수단위가 수학교육과정연구에 어떻게 활용될 수 있는지 그 방안을 모색해 보았다. 도형영역의 교수단위(TU)는 특징과 제목에 따라 '개념알기형', '개념적용형', '관계알기형'의 세 유형으로 분류할 수 있다. 현재의 도형영역 교육과정은 대체로 개념알기형, 개념적용형, 관계알기형의 순으로 구성되어 있으며, 개념적용형이 개념알기형보다 조금 더 많다. 이는 도형영역 교육과정이 학습한 개념을 다양한 방법을 통해 여러 활동에 적용시켜 봄으로써 도형의 개념을 좀 더 명확하게 알게 되는 초등학생의 발달단계를 고려하여 구성되었음을 알 수 있다. 이러한 교수단위(TU)는 수업자가 도형학습주제에 맞게 수업을 재구성하거나 학생들의 수준에 맞는 수준별 맞춤자료를 제작할 때 유용하게 활용될 수 있으며, 더 나아가 수학연구자들이 새로운 교육과정을 수립하고자 할 때 기초자료로 활용될 수도 있을 것이다. 교수단위는 고정불변의 것이 아니고 계속 보완되고 진화될 수 있는 모델이다. 따라서 앞으로도 많은 수학연구자나 현장교사의 참여로 교수단위가 보다 더 체계적이고 조직적으로 연구되어야 한다. 또한 추출된 교수단위를 교사나 학생들이 보다 편리하게 활용할 수 있도록 컴퓨터용 소프트웨어로 개발하려는 후속 연구가 필요하다.
단일 문자 인식과 달리 연속 필기 패턴의 인식은 근본적인 필기 패턴의 형태적 특성을 충분히 고려할 필요가 있으며 다양한 형태의 패턴에 대한 특징이나 정보를 사용하여 종합적으로 판단 할 수 있는 모델의 유연성이 요구된다. 신경망의 학습 기능은 패턴의 왜곡과 잡음 등에 크게 영향을 받지 않으면서 인식에 필요한 특징의 추출이나 패턴 부류에 해당하는 노드의 반응을 스스로 학습시킬 수 있고, 다양한 형태의 정보를 쉽게 통합할 수 있는 유연한 구조를 제공한다. 퍼지 이론(Fuzzy theory)은 일정한 규칙이나 수학적 모델로 표현하기 어려운 패턴의 애매한 특징을 모델링할 수 있기 때문에 인식 대상의 총체적 특징을 추출해 신경망에 효과적으로 적용할 수 있다. 본 논문에서는 연속 필기 숫자 패턴을 인식을 위한 신경망과 퍼지 이론을 이용한 통합 신경망 모델을 제안한다.
본 논문에서는 스테레오 영상으로부터 얻은 특징점들을 활용하여 기초행렬(Fundamental matrix)을 추정하는 실험을 한다. 획득한 영상들은 보정이 되어 있으며, 특징점 추출 후 매칭은 RANSAC 등의 기존 알고리즘을 활용한다. 기초 행렬을 얻기 위해 스테레오 영상으로부터 정의되는 에피폴라 점, 에피폴라 선, 에피폴라 평면을 정의하고, 이들로부터 얻을 수 있는 기하학적 관계식을 활용하여 기초행렬을 수학적으로 추정해 보고, 실험으로 수학적 이론을 검증해 본다.
본 논문은 내용기반 이미지 검색을 위한 새로운 특징벡터 추출 기법을 제안한다. 제안된 기법은 주어진 이미지의 모양정보에 수학적 회귀를 적용하여 추출되는 특징벡터 양을 최소화하고 이를 이용하여 보다 정확한 내용검색이 이루어지도록 한다. 또한 제안된 기법은 실제 구현을 통한 여러 이미지 집합에 대한 실험 결과에서 기존의 기법보다 우수한 검색결과를 나타냄을 보인다.
경계선 추출(edge detection)은 영상처리 및 인식 분야의 여러 응용분야에서 쓰이는 중요한 전처리과정 중 하나이다. 경계선이란 두 영역 사이의 경계에 위치한 점들[12]을 말하며, 경계선 추출은 영상 속에 위치한 이런 경계점들을 찾는 작업을 말한다. 경계선 추출 방법에 대해서는 많은 연구가 진행되어 왔지만 사물의 실제 경계선을 정확히 추출해내는 것은 여전히 어려운 문제로 남아있다. 이에 본 논문에서는 인간의 시각 정보처리 방법을 기존 문헌을 통해 분석하고 이를 기반으로 한 경계선 추출 모형을 제안한다. 제안된 모형은 기존의 수학적인 시각 모형에서 불가피하게 제외되는 시각 특징 및 인간의 시각기관의 특징을 포함할 수 있을 것으로 기대된다.
C.elegans 선충은 유전자 기능 연구에 주로 쓰이고 있으나, 변종들의 구분이 육안으로는 쉽지 않다. 이를 해결하기 위하여 컴퓨터 비젼을 이용하여 자동으로 분류할 수 있는 시스템이 연구 중이며, 이전 논문[1]에서 선충의 자동 분류 시스템에 사용될 영상의 전처리 과정에 대하여 서술한 바 있다. 본 논문에서는 전처리 된 영상 데이터를 이용하여 추출해 낼 수 있는 선충의 형태적 특징들을 제시한다. 선충의 크기와 관련한 특징과 자세에 관련한 특징으로 나누어, 각 특징의 추출 알고리즘을 수학적으로 표현하였다. 실험에서 제시된 형태적 특징 정보를 이용하여 직접 분류해 봄으로써 성능을 확인하였다. 분류 알고리즘은 Hierarchical Clustering을 사용하였다. 그 결과 실험에 이용된 선충의 4 종류 모두 90% 이상 옳게 분류되었다.
여러 국외 연구는 SMK의 주요 특징을 HCK와 관련하여 설명하면서 수학 교사 교육의 핵심 목표 중 하나로 HCK의 개발을 강조하였다. 그러나 국내에는 SMK의 하위 요소로서 HCK의 구체적인 의미를 살피거나 우리나라 교사들이 지닌 HCK의 특징을 본격적으로 분석한 연구가 거의 없다. 이에 이 연구는 Ball & Bass(2009)의 관점에서 HCK를 다룬 국외 연구를 검토하여 대학 수학을 통해 개발될 필요가 있는 HCK의 특징을 구체적으로 확인하였다. 또한 대학 수학의 목표가 AMT 개발에 있음을 강조한 Zazkis & Leikin(2010)에 따라 AMT 관련 선행 연구를 분석하여 HCK 개발의 기반이 되는 AMT의 핵심 특징을 구체화하였다. 이를 토대로 예비교사들의 HCK를 역함수 기호에 대한 이해에 주목하여 분석하기 위한 지필 검사 도구를 개발하였으며, 이를 예비교사 57명에게 적용하여 얻은 답변 자료를 검사 도구 개발 의도 및 함수 개념 수준에 비추어 분석하였다. 이로부터 역함수 및 역함수 기호와 관련하여 예비교사들이 지닌 HCK의 특징을 4가지로 추출하였으며, 각각의 특징이 지닌 시사점을 수학 교사 전문성 신장을 위한 HCK 개발의 측면에서 기술하였다.
기계학습은 문제가 복잡하여 수학적으로 정의를 하는 것이 어려울 때 유용하게 쓸 수 있는 방법으로 최근 패턴 또는 영상을 인식하기 위하여 급속도록 많이 사용되고 있다. 본 논문에서는 기존의 학습 모델과는 다르게 인간의 시각정보처리과정 중 망막의 특성과 시각피질의 특성을 고려한 모델을 제시하여 학습의 첫 단계인 원시 데이터를 가공하는 과정을 개선함으로써 좀 더 효율적인 인식모델을 제안하고자 한다.
중국은 여러 측면에서 우리에게 중요한 국가로 부상하고 있으며, 교육 분야도 예외는 아니다. 그러나 현재까지 수학교육 분야에서 중국에 대한 주목할 만한 연구는 이루어지고 못하다. 이에 찬 연구에서는 중국의 최근 수학 교육과정을 소개하고 우리나라의 교육과정과 비교하였다 중국 수학교육과정의 특징으로 내용 영역 구분의 광역화, 집중형, 선형적 내용 구성, 학습 목표의 구체적 진술과 예제의 제시 등을 추출하고, 이에 기초하여 차기 교육과정 개정에 참고할 만한 시사점을 도출하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.