• Title/Summary/Keyword: 수학적 최적화

Search Result 280, Processing Time 0.025 seconds

Development of Copycat Harmony Search : Adapting Copycat Scheme for the Improvement of Optimization Performance (모방 화음탐색법의 개발 : 흉내내기에 의한 최적화 성능 향상)

  • Jun, Sang Hoon;Choi, Young Hwan;Jung, Donghwi;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.304-315
    • /
    • 2018
  • Harmony Search (HS) is a recently developed metaheuristic algorithm that is widely known to many researchers. However, due to the increasing complexity of optimization problems, the optimal solution cannot be efficiently found by HS. To overcome this problem, there have been many studies that have improved the performance of HS by modifying the parameter settings and incorporating other metaheuristic algorithms. In this study, Copycat HS (CcHS) is suggested, which improves the parameter setting method and the performance of searching for the optimal solution. To verify the performance of CcHS, the results were compared to those of HS variants with a set of well-known mathematical benchmark problems. The effectiveness of CcHS was proven by finding final solutions that are closer to the global optimum than other algorithms in all problems. To analyze the applicability of CcHS to engineering optimization problems, it was applied to a design problem for Water Distribution Systems (WDS), which is widely applied in previous research. As a result, CcHS proposed the minimum design cost, which was 21.91% cheaper than the cost suggested by simple HS.

Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating (유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.19-28
    • /
    • 2006
  • Most conventional model updating methods must use mathematical objective function with experimental modal matrices and analytical system matrices or must use information about the gradient or higher derivatives of modal properties with respect to each updating parameter. Therefore, most conventional methods are not appropriate for complex structural system such as bridge structures due to stability problem in inverse analysis with ill-conditions. Sometimes, moreover, the updated model may have no physical meaning. In this paper, a new FE model updating method based on a hybrid optimization technique using genetic algorithm (GA) and Holder-Mead simplex method (NMS) is proposed. The performance of hybrid optimization technique on the nonlinear problem is demonstrated by the Goldstein-Price function with three local minima and one global minimum. The influence of the objective function is evaluated by the case study of a simulated 10-dof spring-mass model. Through simulated case studies, finally, the objective function is proposed to update mass as well as stiffness at the same time. And so, the proposed hybrid optimization technique is proved to be an efficient method for FE model updating.

Task Sequence Optimization for 6-DOF Manipulator in Press Forming Process (프레스 공정에서 6자유도 로봇의 작업 시퀀스 최적화)

  • Yoon, Hyun Joong;Chung, Seong Youb
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.704-710
    • /
    • 2017
  • Our research team is developing a 6-DOF manipulator that is adequate for the narrow workspace of press forming processes. This paper addresses the task sequence optimization methods for the manipulator to minimize the task-finishing time. First, a kinematic model of the manipulator is presented, and the anticipated times for moving among the task locations are computed. Then, a mathematical model of the task sequence optimization problem is presented, followed by a comparison of three meta-heuristic methods to solve the optimization problem: an ant colony system, simulated annealing, and a genetic algorithm. The simulation shows that the genetic algorithm is robust to the parameter settings and has the best performance in both minimizing the task-finishing time and the computing time compared to the other methods. Finally, the algorithms were implemented and validated through a simulation using Mathworks' Matlab and Coppelia Robotics' V-REP (virtual robot experimentation platform).

Laser system Optimization by Genetic Algorithm (유전자 알고리즘을 이용한 레이저 시스템 최적화)

  • Lee, Jinho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.721-726
    • /
    • 2020
  • Genetic algorithm was first introduced to study adaption phenomena occurring in nature based on Darwin's theory of survival of the fittest. It has been used when analytical approach is not possible because of a large number of variables. In this paper, we demonstrated that genetic algorithm could be used to obtain physically optimized experimental values. We programmed a genetic algorithm that uses a few Gaussian functions to find a given function value and the same algorithm was connected to the laser system to obtain laser pulses of 40fs of maximum pulse width and 1mJ of maximum output power. This study shows that genetic algorithm can be applied to laser systems to obtain the optimized laser pulses.

A Study on the Variation of Post Buckling Behaviour of 2-dimensional Shallow Arch Truss after Size Optimization (크기최적화 이후에 나타나는 2차원 얕은 아치 트러스의 후 좌굴 거동의 변화에 대한 연구)

  • Lee, Sang-Jin;Lee, In-Soo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.107-112
    • /
    • 2008
  • This paper investigates the variation of post-buckling behaviours of 2-dimensional shallow arch type truss after sizing optimization. The mathematical programming technique is used to produce the optimum member size of 2D arch truss against a central point load. Total weight of structure is considered as the objective function to be minimized and the displacement occurred at loading point and member stresses of truss are used as the constraint functions. The finite difference method is used to calculate the design sensitivity of objective function with respect to design variables. The postbuckling analysis carried out by using the geometrically nonlinear finite element analysis code ISADO-GN. It is found to be that there is a huge change of post-buckling behaviour between the initial structure and optimum structure. Numerical results can be used as useful information for future research of large spatial structures.

  • PDF

Estimating Hydrodynamic Coefficients with Various Trim and Draught Conditions (흘수 및 트림 변화를 고려한 선박 유체력 미계수 추정에 관한 연구)

  • Kim, Daewon;Benedict, Knud;Paschen, Mathias
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.933-940
    • /
    • 2017
  • Draught and trim conditions are highly related to the loading condition of a vessel and are important factors in predicting ship manoeuverability. This paper estimates hydrodynamic coefficients from sea trial measurements with three different trim and draught conditions. A mathematical optimization method for system identification was applied to estimate the forces and moment acting on the hull. Also, fast time simulation software based on the Rheinmetall Defense model was applied to the whole estimation process, and a 4,500 Twenty-foot Equivalent Unit (TEU) class container carrier was chosen to collect sets of measurement data. Simulation results using both optimized coefficients and newly-calculated coefficients for validation agreed well with benchmark data. The results show mathematical optimization using sea measurement data enables hydrodynamic coefficients to be estimated more simply.

A Path Optimization Algorithm of PCB Inspection Machine (인쇄회로기판 검사기의 경로 계획 알고리즘)

  • Lee, Soo-Gil;Kim, Hwa-Jung;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2439-2441
    • /
    • 2002
  • SMT형 인쇄회로기판 조립라인에서 SMD의 조립상태를 검사하는 검사기를 위한 경로계획 알고리즘을 제안한다. 경로계획 알고리즘은 FOV 생성 최적화와 생성된 FOV의 순서 최적화에 의하여, 검사기의 선체 검사 시간의 단축을 목표로 한다. 본 논문에서는 검사기 경로계획 문제를 수학적으로 모델링하고, 전체 검사 단계를 FOV 생성 단계와 순서결정 단계의 계층적 구조로 구성한다. 각 단계의 알고리즘은 FOV 생성 알고리즘과 TSP 알고리즘을 적용하여 구현한다. 제시된 알고리즘을 실제 검사장비에 적용하여 시뮬레이션하고, 그 유용성을 검증한다.

  • PDF

An Optimization Approach to the Wind-driven Ocean Circulation Model (해수순환모델에 대한 최적화 방법)

  • KIM Jong-Kyu;RYU Cheong-Ro;CHANG Sun-duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.787-793
    • /
    • 1994
  • It has been demonstrated for the finite-difference ocean circulation model that the problem of uncertain forcing and input data can be tackled with an optimization techniques. The uncertainty problem in interesting flow properties is exploring a finite difference ocean circulation model due to the uncertainty in the driving boundary conditions. The mathematical procedure is based upon optimization method by the conjugate gradient method using the simulated data and a simple barotropic model. An example for the ocean circulation model is discussed in which wind forcing and the steady-state circulation are determined from a simulated stream function.

  • PDF

Systems Engineering에 대하여 I

  • 고명삼
    • 전기의세계
    • /
    • v.18 no.5
    • /
    • pp.26-31
    • /
    • 1969
  • 이글에서는 앞으로 시스템 공학에 특유한 수학적해석방법을 수시로 도입하면서 system 공학의 합성, system 공학의 해석과 최적화, system공학의 영역과 그 응용례를 차례로 들면서 설명하고저한다. 끝으로 부언하지 않은 이상은 어디까지나 Deterministic Models에 한한 것으로 한다.

  • PDF

Development of Ideal Model Based Optimization Procedure with Heuristic Knowledge (정위적 방사선 수술에서의 이상표적모델과 경험적 지식을 활용한 수술계획 최적화 방법 개발)

  • 오승종;송주영;최경식;김문찬;이태규;서태석
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.84-93
    • /
    • 2004
  • Stereotactic radiosurgery (SRS) is a technique that delivers a high dose to a target legion and a low dose to a critical organ through only one or a few irradiations. For this purpose, many mathematical methods for optimization have been proposed. There are some limitations to using these methods: the long calculation time and difficulty in finding a unique solution due to different tumor shapes. In this study, many clinical target shapes were examined to find a typical pattern of tumor shapes from which some possible ideal geometrical shapes, such as spheres, cylinders, cones or a combination, are assumed to approximate real tumor shapes. Using the arrangement of multiple isocenters, optimum variables, such as isocenter positions or collimator size, were determined. A database was formed from these results. The optimization procedure consisted of the following steps: Any shape of tumor was first assumed to an ideal model through a geometry comparison algorithm, then optimum variables for ideal geometry chosen from the predetermined database, followed by a final adjustment of the optimum parameters using the real tumor shape. Although the result of applying the database to other patients was not superior to the result of optimization in each case, it can be acceptable as a plan starling point.

  • PDF