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It has been demonstrated for the finite-difference ocean circulation model that the

problem of uncertain forcing and input data can be tackled with an optimization techniques.

The uncertainty problem in interesting flow properties is exploring a finite difference

ocean circulation model due to the uncertainty in the driving boundary conditions. The

mathematical procedure is based upon optimization method by the conjugate gradient

method using the simulated data and a simple barotropic model. An example for the ocean

circulation model is discussed in which wind forcing and the steady-state circulation are

determined from a simulated stream function.

Introduction

We study the problem of “inadequate” input data
for the finite difference ocean circulation models.
Inadequate in this context means unequally distri-
buted, with gaps and points or regions of poor ac-
curacy or both. The attribution of the data to the
grid points of models is traditionally done by inter-
polation, filtering, objective mapping etc., which
leads to uneven accuracy at individual grid points.
But the finite difference ocean circulation models
do not normally distinguish between more or less
reliable input data, and poor quality data might
have a significant impact on the solution.

An approach taken here is looking for an “opti-
mal solution” or “the best solution™. We write the
model equations as inequalities instead of equalities
as a reflection of the varying accuracy of the data.
Also unequal weights might be attributed to indivi-
dual inequalities. The resulting system can no
longer be solved by an exact sense; only an “Opti-
mal’ can be founded. Optimal in this context
means a solution that optimizes an objective quan-
tity. This quantity was also called an “objective
function” or “cost function”.
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The purpose of this paper is to show, by a sim-
ple example, that the methods associated with the
“objective mapping”,

names “inverse method”,

“optimal estimation”, etc.. can be combined with
the enormous content of information intrinsic to
the finite difference model representation of ocean
dynamics and evolution. The solution is found by
optimizing the objective function while the inequa-
lities act as constraints. Therefore, we explore the
solution of conventional finite difference ocean cir-
culation models by optimization methods designed
specifically to determine the uncertainties of the
solution and to permit reasonably easy exploration
of observational strategies.

The study of the steady wind-driven ocean cir-
culation is generally held to have begun with the
linear calculations of Stommel (1948) and Munk
(1950). Nonlinear effects in the boundary currents
or jets were investigated by Charney (1955), Mor-
gan (1956), Carrier and Robinson (1962), Veronis
(1964, 1966) and other authors. Harrison and Sta-
los (1982) studied the simplest nonlinear wind-dri-
ven ocean circulation system, the barotropic vorti-
city equation driven by steady zonal winds and
with

linear bottom friction, previously studied
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most intensively by Veronis (1966).

We will examine a simple model describing the
wind-driven circulation in a square-basin ocean.
The forcing is left uncertain in a small part of the
basin and solutions are calculated that minimize
(maximize) the sum of the stream function squar-
ed y* that can be a measure of the potential en-
ergy. The solutions are discussed and the impact
of a number of additional constraints on them is

shown.

Ocean Circulation Model

In this study, we will demonstrate the linear and
nonlinear programming technique with a finite di-
fference models of the wind-driven ocean circula-
tion in a square basin of uniform depth D and
side lengths L on a S-plane. These models were
adopted deliberately for their simplicity. Thus, wi-
thout much additional effort, nonlinear effects can
be included and oceanographically interesting pro-
blems can be tackled (Harrison and Stalos, 1982).
We have restricted ourselves to the linear case
where the solutions themselves is put on the new
solution technique and the impact of the constraints
used on the solutions.

The underlying equation is the time independent
vorticity equation which has been used by Veronis
(1966a, b). The transformed equation in the limit
of very weak flow as follows.
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o
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where y is the transport stream function. Ekman
number (nondimensional friction parameter) ¢ des-
cribes the width of the western boundary current,
k is the friction parameter, § is the Coriolis effect,
and L=nl is the horizontal dimension of the basin.

The boundary conditions for the stream function
are w=0 at x=0.1 and y=0.1. £ was set to 0.2 so
that yma 1s at x=0.25 and most of the basin is in
Sverdrup-balance.

The differential equation (1) is transformed into
a finite difference equation by approximating the
derivatives as centered differences (Roache, 1982).
The grid size was chosen to be equal for x and y,
Ax=Ay=1/n leading to n* grid points in the inte-
rior of the basin. ¢ and Ax cannot be chosen inde-
pendently as at least one, and preferably three grid
points in the x-direction have to lie in the western
boundary current. The finite difference representa-
tion of equation (1) is thus a collection of linear
algebraic equations as follows

AGY) =0= %-ﬁ-svzy/ )

The linear problem was solved by Stommel (1948).
Uncertainties in the forcing are introduced by pre-
scribing bound constraints for A(y). Thus, equa-
tion (3) can be rewritten as a set of range inequa-
lity constraints

LB[;SA( W) EC/«S UB/ (4)

where the lower bound LB, and upper bound UB,
describe the forcing by the wind stress curl. Note
that LB, and UB, directly describe not the devia-
tions from the steady state but the uncertainty in
the forcing. Ideally, LB, and UB; are equal. C; de-
notes the " constraint (Eq.(4)) transformed into
an equality constraint by the addition of a bounded
slack variable. An advantage of the formulation (4)
is that the uncertainty in the forcing would norma-
lly be dependent on the position.

Optimization Procedure

Interesting properties of the ocean circulation
that can be modeled with a nonlinear barotropic
models are western boundary current transports,
potential or kinetic energies, etc. We define a num-
ber of diagnostic objective functions F;, that desc-
ribe interesting features of the flow. The following
ones have been used by Schréter and Wunsch
(1986)

D) Fi= s Fi is to be interpreted as the wes-
current

tern boundary transport
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and is lhinear in y.

i) F,=[y’da: F, < potential energy and is nonli-
near in y; da is the area differen-
tial.

iii) F=[(Vy)’da:F, « kinetic energy and is non-

linear in .

These properties will be called “objective function”.

We will look for solutions that drive one of the

quantities F; to its extreme minimum or maximum

value. Thus, the mathematical procedure to find the
extreme values of objective functions F, subject to
the constraints. That is, we will solve the problems

as follows

Minimize F(y) subject to LB,<A(y)<UB, (5)
For FF we choose

F=3 ()’ (6)

which is an expression of the potential energy of
the flow. Many other definitions F; would serve the
purpose equally well. If the number of “active”
constraints is equal to the number of unknowns,
the definition of F, is irrelevant.

The optimization is performed as the minimiza-
tion of an unconstrained augmented Lagrangian
function L,

L= iF—/_il}V,ckerc"‘c (7

where, C is the nX1 vector with the elements Cj,
A is the corresponding Lagrangian multiplier that
describes the sensitivity of the objective function F
to variation in C, and p is a penalty parameter that
describes the weight of small violations of the con-
straints C; (Luenberger, 1984). The sign of F in
equation (7) is positive in the case of a minimiza-
tion of F and negative in the case of its maximi-
zation.
The minimization of L is regarded as successful
when
1) the norm of the projected Hessian of L at the
solution is very small (< 10 ¥),
ii) the RMS violations of the constraints %
(CTC)™ is relatively small (< 107%).
The fully posed problem {(equation (1)) was first
solved this way; here the solution is fully cons-
trained as well as the maximum of F is also its mi-

nimum, as the feasible region for the solution v is
one point in region. This solution agrees well with
Stommel’s analytic solution of equation (1) (Fig. 1;
Stommel, 1948). The ratio of v to Stommel's an-
alytical solution at the grid points varies between
0.985 and 0.989. Fig. 1 shows the normalized st-
ream function for the fully posed problem.
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Fig. 1. Contour of the normalized stream function

¥/ Ymax for the fully posed problem (Stommel,
1948).

Results and Discussion

Following the approach outlined the upper and lo-
wer bounds of the constraints (5) was varied in the
Sverdrup-region. We assume that the curl of the
wind stress is uncertain by a factor of 3 in this area
(LB=3(-sin mx,*sin yy); UB=1/3(Csin wx,

* sin yy;)). Fig. 2 and Fig. 3 show the stream func-
tions resulting from the maximization and minimiza-
tion of the objective function F, respectively. In all
Figures w differs much more from the fully posed
solution (Fig. 1) than the minimized y. This stems
from the fact that for the maximization the constrai-
nts C; approach their lower bounds LB,(maximum
of modulus of forcing) while for the minimization
the constraints become active at UB,(minimum of
modulus of forcing) and LB, differs more from the
fully posed forcing than UB,. The replacement of F
(equation (6)) by a linear function
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Fu=2 i w20 (8)
led to the same solutions for w as the range cons-
traints become active at their lower (upper) bound.
We can thus choose the objective function for nu-
merical convenience. For the minimization of (7)
a modified Newton algorithm was used and the
quadratic F produced better convergence than the
linear one. If Fj, is chosen as the objective func-
tion, a Simplex algorithm could be used for solving
our problem but the inclusion of nonlinear terms
in the vorticity equation (1), which we anticipate in
a next step of our examination would not be possi-
ble.

A modified Newton algorithm can be used to mi-
nimize the objective function according to the follo-
wing procedure:

i) Initial guess is chosen to minimize objective
function,

ii) Calculate the value of the objective function,

iii) Calculate the gradient of the objective func-

tion,

iv) Use an optimization procedure (conjugate
gradient method; Luenberger, 1984) with the in-
formation on the value and gradient of the parame-
ters and return to step 2. Continue iterations until
objection is at its minimum values.

Five optimization runs were made with bounds
on yw and one run with velocity constraints. A
number of model runs were made for different po-
sitions of the line constraining w. A summary of

the result is given in Table 1 for linear case. Two
parameters were chosen to represent the ‘close-
ness’ of the the solution to the fully posed w (Run
1: Fig. 1). First the kinetic energy integrated over
the basin (in arbitrary units), and second the ob-
jective function. With the exception of Run 4 and
5 with maximized F, both parameters give the
same order of 'closeness’ to the fully posed w. As
the line of constraints on w approaches the region
of uncertain forcing (Run 2, Fig. 2) the solutions
become closer to the fully posed one, both for ma-
ximization and minimization (Run 3, 4 and 5; Fig.
3). A line in the east-west direction has little ini-
luence (Run 6), as the changes in y due to the un-
certain forcing are more significant in the east-west
than in the north-south direction. A more severe
bounding of w(Run 7) has a significant impact on
the solution. Fig. 4 shows the imposition of velocity
constraints (Run 8) at two points in the western
boundary current for both u and v-components re-
sults in solution very close to the fully posed
(Table 1).

Apparently, not only the imposed constraints and
bounds but also the dynamics of the barotropic ve-
locity equation constrain the flow. This fact is not
unexpected and can be proved. The corresponding
C: in equation (5) becomes equal to the forcing in
the fully posed problem and thus removes the un-
certainty in the forcing at those points completely.
This holds for the maximization as well as the mi-
nimization of the objective function F.

Tabie 1. The results of the optimization procedure to the finite difference ocean circulation model

T —
Run Description ({:rlgifz?acrye nuer:g) Objective function
Minimum(Maximum) -
1 Fully posed (Stommel’s sol.) 1.00(1.00) 1.00(1.00)
2 Forcing in factor 0.79(1.78) 0.79(1.79)
3 v known along x=3/n to 10% 0.83(1.26) 0.81(1.29)
4 v known along x=5/n to 10% 0.87(1.20) 0.85(1.22)
5 w known along x=7/n to 10% 0.89(1.21) 0.88(1.18)
6 w known along x=4/n to 10% 0.81(1.43) 0.79(1.44)
7 w known along x=5/n to 5% 0.92(1.11) 0.90(1.13)
8 Four velocity constraints 0.99(1.01) 0.99(1.01)

NB.: The percentage indicates an accuracy of % for the bounds on y imposed along a line crossing

the basin.

790



An Optimization Approach to the Wind-driven Ocean Circulation Model

0.0 0.2 0.4 0.6 0.8 1.0
X

Fig. 2. Contour of the normalized stream function
¥/ wmax. The objective function is maximized.
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Fig. 4. Contour of the normalized vorticity function
V2/V2max corresponding to Fig. 2.

Summary and Perspectives

It has been demonstrated for the finite-difference
ocean circulation model that the problem of uncer-
tain forcing and input data can be tackled with an
optimization techniques. The uncertainty problem
in interesting flow properties is exploring a finite
difference ocean circulation model due to the unce-
rtainty in the driving boundary conditions. The ma-
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Fig. 3. Contour of the normalized stream function
¥/ wmax With the additional position constraint.
The objective function is minimized.

thematical procedure is based upon optimization
method by the conjugate gradient method using the
simulated data and a simple barotropic model. An
example for the ocean circulation model is discus-
sed in which the wind forcing and the steady-state
circulation are determined from simulated stream
function observations.

The next steps from where we have reached will
be i) introduction of different objective functions
and other kinds of constraints, and ii) application
of the method to the general ocean circulation mo-
del. (i) and (ii) will increase our knowledge of the
optimization techniques and the application of the
method to the real problems, respectively.
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