Journal of Elementary Mathematics Education in Korea
/
v.16
no.1
/
pp.1-19
/
2012
Kant defines mathematical cognition as the cognition by reason from the construction of concepts. In this paper, I inquire the meaning and the characteristics of the construction of concepts based on Kant's theory on the sensibility and the understanding. To construct a concept is to exhibit or represent the object which corresponds to the concept in pure intuition apriori. The construction of a mathematical concept includes a dynamic synthesis of the pure imagination to produce a schema of a concept rather than its image. Kant's transcendental explanation on the sensibility and the understanding can be regarded as an epistemological theory that supports the necessity of arithmetic and geometry as common core in human education. And his views on mathematical cognition implies that we should pay more attention to how to have students get deeper understanding of a mathematical concept through the construction of it beyond mere abstraction from sensible experience and how to guide students to cultivate the habit of mind to refer to given figures or symbols as schemata of mathematical concepts rather than mere images of them.
수학에서는 컴퓨터를 활용해야 하고, 사회생활에서는 수학을 활용해야 한다. 이런 의미에서 엑셀을 수업 시간에 활용하는 것이 필요하다. 수학II의 일차변환을 엑셀을 어떻게 활용할 수 있는 가를 제시한다. 일차변환의 응용으로서, 이동을 포함시킨 아핀변환을 이용하여 프랙탈을 생성하는 방법을 찾아본다. 프랙탈을 생성하기 위해서는 IFS(Iterated Function System)에 의해 수 만번의 합성변환을 필요하므로 소프트웨어가 필수적이다. 여기서는 Fanstic Fractals 프로그램을 이용하여 직관적으로 얻은 그림에서 변환 행렬의 값을 구하여, 엑셀에서 두 가지 방법으로 분석하였다.
The purpose of this paper intuitively shows the exact and logical explanation of Independent Event and Dependent Event. In actual classrooms, teachers have difficulty in describing the connection between those events and real life. Some teachers have wrong perceptions on the definition of those events. For example, they may not realize exactly what P(B A)=P(B) means and may not explain intuitively the original meaning of why it is independent event. Also they believe that Independent Event and Dependent Event do not always match with real life. This paper, therefore, tries to prove intuitively the exact meanings of those events in the Verbal Form with some examples and it proves that those events exactly match with real life. It is expected that this paper will greatly contribute to the improvement of probability education.
Researchers have suggested that students should be experienced in progress of geometric thinking set out in naive and intuitive level and deduced throughout gradual formalization rather than completed mathematics are conveyed to students for students' understanding. This study examined naive and intuitive thinking of students by investigating students' geometric problem solving without diagrams. The students showed these naive thinking: lack of recognition of relation between problem and conditions, use of intuitive judgement depending on diagrams, lacking in understanding of role of specific case, and use of unjustified assumption. This study suggests implication for instruction in geometry.
Current up-to-date courses of study put emphasis on raising creative students. However, the cramming methods of teaching mathematics in the school seems far from the creativity and the number of students who feels mathematics difficult is increasing. To overcome this situation, the government proposed 'the mathematics education using storytelling', which leads to lots of developments of mathematics using serious game in many areas. However most of the current serious games couldn't do away with the deductive framework of mathematics, which makes it impossible to achieve the purpose of raising creative students. This is because existing mathematics serious games have not deeply contemplated many aspects such as the purpose and theories of teaching and teaching mathematics. Therefore, in order to overcome the limitations of cramming methods in existing mathematics educations, this research proposes the new method of developing serious game contents for elementary geometry that is useful to improve mathematical intuition, based on RME, the theory of teaching/learning mathematics.
This article aims at providing implication for teacher preparation program through interpreting pre-service teachers' knowledge by using Shulman-Fischbein framework. Shulman-Fischbein framework combines two dimensions (SMK and PCK) from Shulman with three components of mathematical knowledge (algorithmic, formal, and intuitive) from Fischbein, which results in six cells about teachers' knowledge (mathematical algorithmic-, formal-, intuitive- SMK and mathematical algorithmic-, formal-, intuitive- PCK). To accomplish the purpose, five pre-service teachers participated in this research and they performed a series of tasks that were designed to investigate their SMK and PCK with regard to students' misconception in the area of geometry. The analysis revealed that pre-service teachers had fairly strong SMK in that they could solve the problems of tasks and suggest prerequisite knowledge to solve the problems. They tended to emphasize formal aspect of mathematics, especially logic, mathematical rigor, rather than algorithmic and intuitive knowledge. When they analyzed students' misconception, pre-service teachers did not deeply consider the levels of students' thinking in that they asked 4-6 grade students to show abstract and formal thinking. When they suggested instructional strategies to correct students' misconception, pre-service teachers provided superficial answers. In order to enhance their knowledge of students, these findings imply that pre-service teachers need to be provided with opportunity to investigate students' conception and misconception.
Proceedings of the Korea Society of Mathematical Education Conference
/
2006.04a
/
pp.211-226
/
2006
이 연구는 수학 창의적 문제해결력을 바탕으로 수학 영재를 판별하기 위해서 수학 창의적 문제해결력 검사를 개발하고, 유창성만으로 수학 창의성을 평가한 이 검사 방법의 신뢰도와 타당도를 검증하는데 있다. 10개의 개방적인 수학 문제를 개발한 바, 수학적으로는 직관적 통찰력, 정보 조직력, 추론능력, 일반화 및 적용력, 반성적 사고력을 요구하는 문제들이다. 이 10문항을 영재교육기관에 입학하고자 지원한 초등학교 5학년 2,2029명에게 실시했다. 교사들은 각 문제에 대해 타당한 답을 제시한 빈도로 유창성을 측정했다. 학생들의 반응은 Rasch의 1모수 문항반응모형을 기반으로 한 BIGSTEPTS 로 분석했다. 문항반응 분석결과, 이 검사는 창의성을 유창성만으로 측정할 때도 영재판별 검사로서 신뢰도, 타당도, 난이도, 변별도가 모두 양호한 것으로 나타났다. 덜 정의되고, 덜 구조화되고, 신선한 문제가 영재교육 프로그램에 지원한 학생들의 수학 창의성을 측정하는데 좋은 문제임을 확인할 수 있었다. 또한 이 검사는 남학생이 여학생보다 수학 창의적 문제해결력이 우수하며, 영재교육원에 지원한 학생들이 수학영재학급에 지원한 학생들보다 더 우수함을 확인해 주었다.
최근 10 여년 동안 교육 현장의 각 부분에 여러 가지 종류의 테크놀로지가 도입되면서, 교육의 내용과 방법에 있어서 점진적인 변화가 나타나고 있다. 예를들어, 수학 과목에 있어서는 그래픽 계산기, 도형 및 기하 학습 프로그램, 스프레드 시트, 함수 그래픽 프로그램 등의 도입으로 교과 과정 전반에 걸친 변화가 일고 있는데, 처음에는 이들 테크놀로지가 단순히 기존의 수업에서 수많은 반복을 요하거나, 지필식 방식으로는 정확하게 나타내기 어려운 도형이나 그래프를 빠르고 정확하게 그려내주는 보조수단으로 사용되었지만, 시간이 지나면서 이들 테크놀로지에 대한 활용도가 높아지게 되고, 이들 테크놀로지에 대한 교사들의 활용능력이 증대됨에 다라서, 이러한 테크놀로지가 단순한 보조수단에 머무르지 않고 주지에 기술이나 개념을 설명하는 방법 자체를 변화시키고 있다. 예를들어, 함수 교육에 있어서 그래픽 프로그램이 사용될 때에도, 초기 단계에서는 이들 함수의 개념을 설명할 때에는 거의 집합론이나 대수학적인 방법을 이용하였고, 최종 단계로 이들 함수를 좌표계 위에 표현하기 위한 보조수단으로 잠깐씩 사용되는 경우가 대부분이었으나, 최근들어서는 함수 학습의 초기과정부터 곧바로 이들 그래프 프로그램을 적극적으로 도입하여 학습자로 하여금 다양한 그래프 조작을 하게 함으로써, 어려운 집합론이나 대수학적인 개념을 도입하지 않고서도 함수에 대한 개념을 시각적으로 직관적으로 파악하도록 하는 학습 방안들이 제시되고 있는 것이다. 본 고에서는 현행 중고등학교 함수 교육 과정에서 그래프에 대한 다양한 조작 기능을 제공함으로써 학습자로 하여금, 제시되는 함수에 대한 시각적이고 직관적인 이미지를 가질 수 있도록 하기 위해서 개발된 ‘그래프 마법사’라는 프로그램을 소개하고자 한다.
The Journal of Korean Association of Computer Education
/
v.10
no.1
/
pp.97-105
/
2007
In this paper, visualization of convolution operation is presented, which is implemented by scalable vector graphics (SVG). Convolution operation is one of the basic essential concepts in the area of signal and image processing. However, it is difficult for students to intuitively understand the operation of convolution since it is mainly based on mathematical representation. We present the visualization of convolution operation and its applications which are implemented by SVG. The effects of the proposed approach have been analyzed by interviews. It has been seen that the proposed visualization of convolution operation could be effectively applied to learn the convolution operation and its applications.
수학학습은 교과 수업시간을 통해서 뿐만 아니라, 자연과 문화 속에 내재된 수학적 원리와 법칙은 관찰이나 탐구를 통하여 습득하거나, 일상생활의 활동과 놀이를 통하여 수학적 개념 및 결과와 관련된 심상이 형성될 수도 있다. 따라서, 계획적으로 잘 구성된 놀이활동을 통하여 수학에 대한 흥미와 호기심을 유발하고, 사고의 유연성과 직관력을 경험하게 함으로써 교육현장에서 교사와 학습자간에 원활한 의사소통이 가능한 학습효과를 기대할 수 있다. 이와 관련하여 본 연구에서는 놀이 활동을 통하여 수학적 경험을 가능하게 하는 활동유형을 탐색하고, 수학의 본질이 잘 고려된 특기 ${\cdot}$ 적성교육 교수-학습 자료 개발 및 이를 활용한 교수-학습 모형을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.