• Title/Summary/Keyword: 수학적 지식의 구성

Search Result 183, Processing Time 0.027 seconds

A study on psychology in mathematics education and constructivism (수학학습심리학과 구성주의에 대한 고찰)

  • Kim, Changil;Jeon, Youngju
    • Journal of the Korean School Mathematics Society
    • /
    • v.25 no.3
    • /
    • pp.243-260
    • /
    • 2022
  • This article examines the educational background of the knowledge system in mathematics education from three perspectives-behaviorism, cognitivism, and constructivism-centered on psychology in mathematics education. First, the relationship between mathematical education and learning psychology is reviewed according to the flow of time. Second, we examine the viewpoints of objectivism and constructivism for school mathematics. Third, we look at the psychology in mathematics education and constructivism from the perspective of learning theory. Lastly, we discuss the implications of mathematics education.

A study on the pedagogical consideration of the related knowledge for teaching 'Approximation' conception (근사개념 지도를 위한 관련 지식의 교수학적 고찰)

  • Chung, Young-Woo;Lee, Mok-Hwa;Kim, Boo-Yoon
    • Communications of Mathematical Education
    • /
    • v.26 no.1
    • /
    • pp.137-154
    • /
    • 2012
  • Approximation' is one of central conceptions in calculus. A basic conception for explaining 'approximation' is 'tangent', and 'tangent' is a 'line' with special condition. In this study, we will study pedagogically these mathematical knowledge on the ground of a viewpoint on the teaching of secondary geometry, and in connection with these we will suggest the teaching program and the chief end for the probable teaching. For this, we will examine point, line, circle, straight line, tangent line, approximation, and drive meaningfully mathematical knowledge for algebraic operation through the process translating from the above into analytic geometry. And we will construct the stream line of mathematical knowledge for approximation from a view of modern mathematics. This study help mathematics teachers to promote the pedagogical content knowledge, and to provide the basis for development of teaching model guiding the mathematical knowledge. Moreover, this study help students to recognize that mathematics is a systematic discipline and school mathematics are activities constructed under a fixed purpose.

Elementary Pre-service Teachers' Uses of Mathematics Teaching Expertise According to the Number of Their Mathematics Instructions in the Teaching Practice (교육실습에서 수학 수업 실행 횟수에 따른 초등예비교사의 수학 수업전문성 지식 활용 양상)

  • Kim, Hae Gyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.1
    • /
    • pp.1-24
    • /
    • 2018
  • This study included eleven elementary pre-service teachers who participated in the first and second teaching practices held by J Education College in 2015. After the pre-service teachers were encouraged to self-reflect on their mathematics teaching using a reflective survey sheet of mathematics teaching expertise, their uses of mathematics teaching expertise were analyzed according to the times of their mathematics practice instructions. The results are as follows: First, as the frequency of their mathematics teaching increased, the pre-service teachers' uses of mathematics teaching expertise increased, especially greatly with seven of them. However, the number of subcategories where the teachers' uses of mathematics teaching expertise increased was different from at least two to seven depending on the teachers. Second, the pre-service teachers who performed mathematics teaching practices four times used more of mathematics teaching expertise than those who did two times or three times. Third, some pre-service teachers who taught two or three times never reached 90% of the total score of any subcategory, even in the subcategory where they showed increase in their uses of mathematics teaching expertise. Fourth, the subcategory of 'reflection before class - teaching perspective - understanding of mathematics subject knowledge' was analyzed as the most difficult one for the study participants, and the reason is, they think, that there are not enough materials on the historical back grounds of mathematical concepts.

  • PDF

Educational Application of Chosun Mathematics in Education of Prospective Elementary School Teachers (예비 교사교육에서 수학사의 교육적 적용 : 조선산학 프로그램을 중심으로)

  • Choi, Eun Ah
    • School Mathematics
    • /
    • v.17 no.2
    • /
    • pp.179-202
    • /
    • 2015
  • In this research, I explored how to apply the history of mathematics in teacher education and investigated the applicability of Chosun Sanhak (mathematics of Chosun Dynasty) as the program that enriched the mathematical knowledge for teaching of prospective elementary school teachers. This program included not only mathematical knowledge but also socio-cultural knowledge and connection knowledge. Prospective teachers participated in various mathematical activities such as explaining, reasoning and problem solving in this program. The effects of this program are as follows. Prospective teachers learned the subject matter knowledge(SMK) which was helpful in teaching basic concepts and skills of elementary mathematics. Next, this program produced the pedagogical content knowledge(PCK) to prospective teachers by giving ideas how to teach.

An Analysis of Communication Means in the Elementary Mathematical Small Group Cooperative Learning (초등학교 수학과 소집단 협동학습에 나타나는 의사소통의 수단 분석)

  • Kong, Hee-Jung;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.9 no.2
    • /
    • pp.181-200
    • /
    • 2005
  • The purpose of this thesis was to analyze communicational means of mathematical communication in perspective of languages and behaviors. Research questions were as follows; First, how are the characteristics of mathematical languages in communicating process of mathematical small group learning? Second, how are the characteristics of behaviors in communicating process of mathematical small group learning? The analyses of students' mathematical language were as follows; First, the ordinary language that students used was the demonstrative pronoun in general, mainly substituted for mathematical language. Second, students depended on verbal language rather than mathematical representation in case of mathematical communication. Third, quasi-mathematical language was mainly transformed in upper grade level than lower grade, and it was shown prominently in shape and measurement domain. Fourth, In mathematical communication, high level students used mathematical language more widely and initiatively than mid/low level students. Fifth, mathematical language use was very helpful and interactive regardless of the student's level. In addition, the analyses of students' behavior facts were as follows; First, students' behaviors for problem-solving were shown in the order of reading, understanding, planning, implementing, analyzing and verifying. While trials and errors, verifying is almost omitted. Second, in mathematical communication, while the flow of high/middle level students' behaviors was systematic and process-directed, that of low level students' behaviors was unconnected and product-directed.

  • PDF

The Impact of Unbalanced Development between Conceptual Knowledge and Procedural Knowledge to Knowledge Development of Students' in Rational Number Domain (개념적 지식과 절차적 지식 간의 불균형한 발달이 학생들의 유리수 영역의 지식 형성에 미치는 영향)

  • Kim, Ahyoung
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.4
    • /
    • pp.517-534
    • /
    • 2012
  • As observing the learning of middle school mathematics students for three years, I examined the relationship between students' procedural knowledge and their conceptual knowledge as they develop those knowledges in the rational number domain. In particular, I explored the implications of an unbalanced development in a student's conceptual knowledge and procedural knowledge by considering two conditions: (a) the case of a student who has relatively strong conceptual knowledge and weak procedural knowledge, and (b) the case of a student who has relatively weak conceptual knowledge and strong procedural knowledge. Results suggest that conceptual knowledge and procedural knowledge are most productive when they develop in a balanced fashion (i.e., closely iterative or simultaneously), which calls into question the assumption that one has primacy over the other.

  • PDF

Two Perspectives in Developing a Visualization Environment (시각화 환경의 개발에 대한 두 관점)

  • 고상숙
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.2
    • /
    • pp.745-752
    • /
    • 1998
  • 컴퓨터의 급속한 보급으로 시각화는 수학 교육자사이의 논의에 자주 등장하는 소재가 되었다. 우리는 다양한 소프트웨어를 사용하여 준비한 수업에 학생들로 임하게는 하지만 거의 그들의 사고 발달과정에는 관심을 갖지 못하고 있다. 이 논문은 구성주의(Constructivism)와 정보처리체계(Information-Processing System)에 입각하여 수학의 시각화를 생각해보고 어떻게 시각화 환경을 준비해야하는지 논해보고자 하였다. 구성주의의 시각화에서는 반영적 추상(reflective abstraction), 반복되는 경험(repeated experience), 그리고 지식 위계성이 학습의 기능 체계를 이루므로 발견적 학습을 통해 학생 스스로 의미를 구성할 수 있도록 Thomas (1992)의 세 가지 제안을 이용하여 수업을 준비할 수 있다. 정보처리체계에서는 지식은 서술적인 것과 과정적인 것으로 나뉘어지고, 시각적 표상을 수록하고 삭제하는 과정과 조작 가능한(manipulative) 환경과의 상호작용으로 기호적 시각으로 표상을 변화하는 과정을 통해 개념을 습득하게된다. 시각화는 스키마와 개념상을 통해서 일어난다. 그래프, 애니메이션, 그리고 다른 시각적 표상 등은 이 개념상에 직접적 효과를 주므로 매우 중요하다. 이런 논란을 바탕으로 교사는 반영적 추상화를 위해 시간을 충분히 제공해야하고, 비슷한 문제를 가지고 여러번 시도를 할 수 있게 하며, 학생을 잘 관찰하여 그들의 지식 위계성을 이해하고 방향을 제시하며, 논리적이고 잘 연결된 시각적 표상을 제공하고, 상징적 사관으로 확장할 수 있게 조작할 수 있는 환경에서 시각화에 대해 학생과 많은 대화를 하도록 수업을 준비해야한다. 그한 예로 타원을 가르치기 위해 몇 가지 테크놀로지를 활용한 시각화 환경을 구성해보았다.ates of bisected bovine embryos by micromanipulator and micropipett were 29.2% and 19.1%, respectively. The rates of non-bisection embryos(46.7%) were significantly higher than those of bisection embryos. 2. The in vitro developmental rates of bisected bovine embryos by micromanipulator, micropipett and pipetting method were 32.4%, 19.4% and 25.6%, respectively.3. The in vitro developmental rates of with and without-zona pellucida of bisected bovine embryos by raicromanipulator were 30.8% and 25.0%, respectively. The rates of nonbisection embryos(53.1%) were significantly higher than those of bisection embryos.랑크톤 군집내 종 천이와 일차생산력에 크게 영향을 미칠 수 있음을 시사한다.TEX>5.2개)였으며, 등급별 회수율은 각각 GI(8.5%), GII(13.4%), GIII(43.9%), GIV(34.2%)로 나타났다.ments of that period left both in Japan and Korea. "Hyojedo" in Korea is supposed to have been influenced by the letter design. Asite- is also considered to

  • PDF

An Analysis on a Teacher's Questioning in the Learner-Centered Mathematics Lessons (학습자 중심의 수학 수업에서 교사의 발문 분석)

  • Park, Man-Goo;Kim, Jin-Ho
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.4
    • /
    • pp.425-457
    • /
    • 2006
  • The purpose of this paper was to analyze a teacher's questioning in the learner-centered mathematics lessons and investigate its effects on the construction of learner's knowledge. For this study, it is analysed that the teacher's questioning in the 3 observed learner-centered lessons concerning elementary division topic. The study results showed that the characteristics of the teacher's questioning were respecting of learner's informal mathematical thinking, open-ended questioning for divergent thinking, appropriate questioning at every group, and respecting classroom norm. Teacher's questioning affects the quality of learner's mathematical thinking and his or her attitude toward mathematics.

  • PDF

An Operational Analysis for Solving Linear Equation Problems (조작적 분석을 통한 일차방정식 해결 연구)

  • Shin, Jae-Hong;Lee, Joong-Kweon
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.3
    • /
    • pp.461-477
    • /
    • 2009
  • In this study, an operational analysis in the context of linear equations is presented. For the analysis, several second-order models concerning students' whole number knowledge and fraction knowledge based on teaching experiment methodology were employed, in addition to our first-order analysis. This ontogenetic analysis begins with students' Explicitly Nested number Sequence (ENS) and proceeds on through various forms of linear equations. This study shows that even in the same representational forms of linear equations, the mathematical knowledge necessary for solving those equations might be different based on the type of coefficients and constants the equation consists of. Therefore, the pedagogical implications are that teachers should be able to differentiate between different types of linear equation problems and propose them appropriately to students by matching the required mathematical knowledge to the students' potential constructs.

  • PDF

수학 개념의 자기 주도적 구성을 위한 교수 ${\cdot}$ 학습 모델 개발 - Cabri Geometry II와 MathView 활용을 중심으로 -

  • Park, Yong-Beom;Kim, Han-Hui;Park, Il-Yeong
    • Communications of Mathematical Education
    • /
    • v.9
    • /
    • pp.97-114
    • /
    • 1999
  • 새로운 세기의 수학 교육은 직관과 조작 활동에 바탕을 둔 경험에서 수학적 형식, 관계, 개념, 원리 및 법칙 등을 이해하도록 지도되어야 한다. 즉 학생들의 내면 세계에서 적절한 경험을 통하여 시각적 ${\cdot}$ 직관적으로 수학적 개념을 재구성할 수 있도록 상황과 대상을 제공해야 한다. 이를 위하여 컴퓨터 응용 프로그램을 활용한 자기주도적 수학 개념 형성에 적합한 교수 ${\cdot}$ 학습 모델을 구안하여 보았다. 이는 수학의 필요성과 실용성 인식 및 자기주도적 문제해결력 향상을 위한 상호작용적 매체의 활용이 요구된다. 본 연구는 구성주의적 수학 교수 ${\cdot}$ 학습 이론을 근간으로 대수 ${\cdot}$ 해석 ${\cdot}$ 기하 및 스프레트시트의 상호 연계를 통하여 수학 지식을 재구성할 수 있도록 학습수행지를 제작하여 교사와 학생의 다원적 상호 학습 기회를 제공하는 데 주안점을 두고자 한다.

  • PDF