This article examines the educational background of the knowledge system in mathematics education from three perspectives-behaviorism, cognitivism, and constructivism-centered on psychology in mathematics education. First, the relationship between mathematical education and learning psychology is reviewed according to the flow of time. Second, we examine the viewpoints of objectivism and constructivism for school mathematics. Third, we look at the psychology in mathematics education and constructivism from the perspective of learning theory. Lastly, we discuss the implications of mathematics education.
Approximation' is one of central conceptions in calculus. A basic conception for explaining 'approximation' is 'tangent', and 'tangent' is a 'line' with special condition. In this study, we will study pedagogically these mathematical knowledge on the ground of a viewpoint on the teaching of secondary geometry, and in connection with these we will suggest the teaching program and the chief end for the probable teaching. For this, we will examine point, line, circle, straight line, tangent line, approximation, and drive meaningfully mathematical knowledge for algebraic operation through the process translating from the above into analytic geometry. And we will construct the stream line of mathematical knowledge for approximation from a view of modern mathematics. This study help mathematics teachers to promote the pedagogical content knowledge, and to provide the basis for development of teaching model guiding the mathematical knowledge. Moreover, this study help students to recognize that mathematics is a systematic discipline and school mathematics are activities constructed under a fixed purpose.
Journal of Elementary Mathematics Education in Korea
/
v.22
no.1
/
pp.1-24
/
2018
This study included eleven elementary pre-service teachers who participated in the first and second teaching practices held by J Education College in 2015. After the pre-service teachers were encouraged to self-reflect on their mathematics teaching using a reflective survey sheet of mathematics teaching expertise, their uses of mathematics teaching expertise were analyzed according to the times of their mathematics practice instructions. The results are as follows: First, as the frequency of their mathematics teaching increased, the pre-service teachers' uses of mathematics teaching expertise increased, especially greatly with seven of them. However, the number of subcategories where the teachers' uses of mathematics teaching expertise increased was different from at least two to seven depending on the teachers. Second, the pre-service teachers who performed mathematics teaching practices four times used more of mathematics teaching expertise than those who did two times or three times. Third, some pre-service teachers who taught two or three times never reached 90% of the total score of any subcategory, even in the subcategory where they showed increase in their uses of mathematics teaching expertise. Fourth, the subcategory of 'reflection before class - teaching perspective - understanding of mathematics subject knowledge' was analyzed as the most difficult one for the study participants, and the reason is, they think, that there are not enough materials on the historical back grounds of mathematical concepts.
In this research, I explored how to apply the history of mathematics in teacher education and investigated the applicability of Chosun Sanhak (mathematics of Chosun Dynasty) as the program that enriched the mathematical knowledge for teaching of prospective elementary school teachers. This program included not only mathematical knowledge but also socio-cultural knowledge and connection knowledge. Prospective teachers participated in various mathematical activities such as explaining, reasoning and problem solving in this program. The effects of this program are as follows. Prospective teachers learned the subject matter knowledge(SMK) which was helpful in teaching basic concepts and skills of elementary mathematics. Next, this program produced the pedagogical content knowledge(PCK) to prospective teachers by giving ideas how to teach.
Journal of Elementary Mathematics Education in Korea
/
v.9
no.2
/
pp.181-200
/
2005
The purpose of this thesis was to analyze communicational means of mathematical communication in perspective of languages and behaviors. Research questions were as follows; First, how are the characteristics of mathematical languages in communicating process of mathematical small group learning? Second, how are the characteristics of behaviors in communicating process of mathematical small group learning? The analyses of students' mathematical language were as follows; First, the ordinary language that students used was the demonstrative pronoun in general, mainly substituted for mathematical language. Second, students depended on verbal language rather than mathematical representation in case of mathematical communication. Third, quasi-mathematical language was mainly transformed in upper grade level than lower grade, and it was shown prominently in shape and measurement domain. Fourth, In mathematical communication, high level students used mathematical language more widely and initiatively than mid/low level students. Fifth, mathematical language use was very helpful and interactive regardless of the student's level. In addition, the analyses of students' behavior facts were as follows; First, students' behaviors for problem-solving were shown in the order of reading, understanding, planning, implementing, analyzing and verifying. While trials and errors, verifying is almost omitted. Second, in mathematical communication, while the flow of high/middle level students' behaviors was systematic and process-directed, that of low level students' behaviors was unconnected and product-directed.
As observing the learning of middle school mathematics students for three years, I examined the relationship between students' procedural knowledge and their conceptual knowledge as they develop those knowledges in the rational number domain. In particular, I explored the implications of an unbalanced development in a student's conceptual knowledge and procedural knowledge by considering two conditions: (a) the case of a student who has relatively strong conceptual knowledge and weak procedural knowledge, and (b) the case of a student who has relatively weak conceptual knowledge and strong procedural knowledge. Results suggest that conceptual knowledge and procedural knowledge are most productive when they develop in a balanced fashion (i.e., closely iterative or simultaneously), which calls into question the assumption that one has primacy over the other.
컴퓨터의 급속한 보급으로 시각화는 수학 교육자사이의 논의에 자주 등장하는 소재가 되었다. 우리는 다양한 소프트웨어를 사용하여 준비한 수업에 학생들로 임하게는 하지만 거의 그들의 사고 발달과정에는 관심을 갖지 못하고 있다. 이 논문은 구성주의(Constructivism)와 정보처리체계(Information-Processing System)에 입각하여 수학의 시각화를 생각해보고 어떻게 시각화 환경을 준비해야하는지 논해보고자 하였다. 구성주의의 시각화에서는 반영적 추상(reflective abstraction), 반복되는 경험(repeated experience), 그리고 지식 위계성이 학습의 기능 체계를 이루므로 발견적 학습을 통해 학생 스스로 의미를 구성할 수 있도록 Thomas (1992)의 세 가지 제안을 이용하여 수업을 준비할 수 있다. 정보처리체계에서는 지식은 서술적인 것과 과정적인 것으로 나뉘어지고, 시각적 표상을 수록하고 삭제하는 과정과 조작 가능한(manipulative) 환경과의 상호작용으로 기호적 시각으로 표상을 변화하는 과정을 통해 개념을 습득하게된다. 시각화는 스키마와 개념상을 통해서 일어난다. 그래프, 애니메이션, 그리고 다른 시각적 표상 등은 이 개념상에 직접적 효과를 주므로 매우 중요하다. 이런 논란을 바탕으로 교사는 반영적 추상화를 위해 시간을 충분히 제공해야하고, 비슷한 문제를 가지고 여러번 시도를 할 수 있게 하며, 학생을 잘 관찰하여 그들의 지식 위계성을 이해하고 방향을 제시하며, 논리적이고 잘 연결된 시각적 표상을 제공하고, 상징적 사관으로 확장할 수 있게 조작할 수 있는 환경에서 시각화에 대해 학생과 많은 대화를 하도록 수업을 준비해야한다. 그한 예로 타원을 가르치기 위해 몇 가지 테크놀로지를 활용한 시각화 환경을 구성해보았다.ates of bisected bovine embryos by micromanipulator and micropipett were 29.2% and 19.1%, respectively. The rates of non-bisection embryos(46.7%) were significantly higher than those of bisection embryos. 2. The in vitro developmental rates of bisected bovine embryos by micromanipulator, micropipett and pipetting method were 32.4%, 19.4% and 25.6%, respectively.3. The in vitro developmental rates of with and without-zona pellucida of bisected bovine embryos by raicromanipulator were 30.8% and 25.0%, respectively. The rates of nonbisection embryos(53.1%) were significantly higher than those of bisection embryos.랑크톤 군집내 종 천이와 일차생산력에 크게 영향을 미칠 수 있음을 시사한다.TEX>5.2개)였으며, 등급별 회수율은 각각 GI(8.5%), GII(13.4%), GIII(43.9%), GIV(34.2%)로 나타났다.ments of that period left both in Japan and Korea. "Hyojedo" in Korea is supposed to have been influenced by the letter design. Asite- is also considered to
The purpose of this paper was to analyze a teacher's questioning in the learner-centered mathematics lessons and investigate its effects on the construction of learner's knowledge. For this study, it is analysed that the teacher's questioning in the 3 observed learner-centered lessons concerning elementary division topic. The study results showed that the characteristics of the teacher's questioning were respecting of learner's informal mathematical thinking, open-ended questioning for divergent thinking, appropriate questioning at every group, and respecting classroom norm. Teacher's questioning affects the quality of learner's mathematical thinking and his or her attitude toward mathematics.
In this study, an operational analysis in the context of linear equations is presented. For the analysis, several second-order models concerning students' whole number knowledge and fraction knowledge based on teaching experiment methodology were employed, in addition to our first-order analysis. This ontogenetic analysis begins with students' Explicitly Nested number Sequence (ENS) and proceeds on through various forms of linear equations. This study shows that even in the same representational forms of linear equations, the mathematical knowledge necessary for solving those equations might be different based on the type of coefficients and constants the equation consists of. Therefore, the pedagogical implications are that teachers should be able to differentiate between different types of linear equation problems and propose them appropriately to students by matching the required mathematical knowledge to the students' potential constructs.
새로운 세기의 수학 교육은 직관과 조작 활동에 바탕을 둔 경험에서 수학적 형식, 관계, 개념, 원리 및 법칙 등을 이해하도록 지도되어야 한다. 즉 학생들의 내면 세계에서 적절한 경험을 통하여 시각적 ${\cdot}$ 직관적으로 수학적 개념을 재구성할 수 있도록 상황과 대상을 제공해야 한다. 이를 위하여 컴퓨터 응용 프로그램을 활용한 자기주도적 수학 개념 형성에 적합한 교수 ${\cdot}$ 학습 모델을 구안하여 보았다. 이는 수학의 필요성과 실용성 인식 및 자기주도적 문제해결력 향상을 위한 상호작용적 매체의 활용이 요구된다. 본 연구는 구성주의적 수학 교수 ${\cdot}$ 학습 이론을 근간으로 대수 ${\cdot}$ 해석 ${\cdot}$ 기하 및 스프레트시트의 상호 연계를 통하여 수학 지식을 재구성할 수 있도록 학습수행지를 제작하여 교사와 학생의 다원적 상호 학습 기회를 제공하는 데 주안점을 두고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.