• 제목/요약/키워드: 수학적 조직화

검색결과 24건 처리시간 0.026초

학습 구조차트 구성을 통한 수학수업이 고등학생들의 학업에 미치는 영향

  • 백은정
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제15권
    • /
    • pp.161-166
    • /
    • 2003
  • 본 연구는 학습 구조차트 구성을 통하여 고등학교 수학의 학습내용을 구조적 ${\cdot}$ 체계적으로 조직화시켜 학생들로 하여금 학습 내용의 효과적인 이해와 상호 관련성을 촉진시키고 학습 내용의 조직화 및 구조화 활동이 고등학생들의 학업에 미치는 영향을 조사하는데 그 목적이 있다. 본 연구에 따르면 수학 학업성취도가 상인 학생은 문제풀이시 머릿속에서 차트를 그리게 되고 여러 가지 개념을 나열하여 조작할 수 있는 능력이 생겼으며 문제 유형에 맞춘 학습 보다는 어떤 개념들이 문제풀이에 사용되었으며 이러한 개념들이 어떻게 나열되는지에 대한 학습으로 관심이 전환되었다. 수학학업 성취도가 하인 학생들은 학습 구조차트의 구성에만 만족하는 편이며 선행지식의 부족으로 복합적인 개념의 문제풀이에 있어서는 여전히 어려움을 경험하고 있었다. 성적이 낮은 학생일수록 개념에 대한 구조화와 조직화에 대한 어려움이 많은 것으로 보여 이들 학생들에 대한 장기적인 연구가 필요하다고 본다.

  • PDF

원의 넓이에 관련된 순환논법과 국소적 조직화 (The Vicious Circle in Calculating Circle Area and the Local Organization)

  • 최영기;홍갑주
    • 대한수학교육학회지:학교수학
    • /
    • 제8권3호
    • /
    • pp.291-300
    • /
    • 2006
  • 본 논문에서는 학교수학에서 발견할 수 있는 순환논법의 예로서 고등학교 미분과 적분 교과서에서 정적분을 통해 원의 넓이를 구하는 과정에서 발견되는 순환논법을 수학적으로 분석하고, 학교수학의 수준에서 원의 넓이에 관련된 몇 가지 증명방법들의 의미를 비교 분석한다. 특히 원의 넓이에 대한 아르키메데스의 증명과정을 고찰하여 학교수학에서 국소적 조직화의 의미와 가치를 재조명한다.

  • PDF

'정의'의 재발명을 상상하다 : Lesson Play의 분석 (Imagining the Reinvention of Definitions : an Analysis of Lesson Plays)

  • 이지현
    • 대한수학교육학회지:학교수학
    • /
    • 제15권4호
    • /
    • pp.667-682
    • /
    • 2013
  • 이 연구에서는 도형 정의의 재발명에 대해 세 교사가 쓴 lesson play를 통하여, 교사들이 가지고 있었던 정의 개념과 연역적 조직화로서의 정의하기를 가르치고자 할 때 봉착했던 교수학적 문제들을 살펴보았다. 교사들은 lesson play에서 도형의 정의를 주입식으로 전달하지 않았으며 여러 다른 정의의 가능성을 제시하였으나, 연역적 조직화로서의 정의하기를 적극적으로 구현할 수는 없었다. 교사들은 정의를 어떤 용어에 대한 언어적 약속으로 생각하여, 정의를 가르치는 데 있어 연역적 조직화와 같은 과정이 왜 필요한 지를 이해하지 못하였다. 또 수학적 정의의 임의성 및 정의와 정리의 지위가 절대적이지 않다는 사실을 수용하는 데에도 어려움을 겪고 있었다. 이와 같은 결과는 교사들이 도형의 수학적 정의를 자신이 배웠던 방식과 다르게 가르치도록 하기 위해서는, 교사교육에서 단순히 Freudenthal의 이론과 같은 이상적인 교수 방향 및 철학을 소개하는 것만으로는 부족하며, 상식적인 정의 개념과 수학적 정의 개념의 차이를 인식하고 반성해보는 것이 필요함을 보여주고 있다.

  • PDF

인류학적 방법에 입각한 수열의 극한 교수에 대하여 (Toward Teaching of the Limit of Sequences Based on the Anthropological Method)

  • 김부윤;정경미
    • 대한수학교육학회지:학교수학
    • /
    • 제11권4호
    • /
    • pp.707-722
    • /
    • 2009
  • 이 논문에서는 최근 유럽, 특히 프랑스에서 많은 연구자들에 의해 고려되어지고 있는 수학 교육의 다양한 이론들을 소개한다. 그 중에서도 Chevallard (1985;1992;1998)에 의해 논의되었던 교수학의 인류학적 이론(The Antro-pological Theory of the Didactic)에 대해 간단히 소개한 다음, 이것에 의해 제안된 인식론적 모델인 인간행동학(Praxeology)에 대해 논의한다. 또한 교수학에 인류학을 도입해야 하는 필요성과 이 이론이 어떻게 교수학적 변환 과정을 통하여 발전되었는지 그 배경과 교수학의 인류학적 이론의 기본 요소들을 제시된다. 마지막으로 '수열의 극한' 교수에 대한 문제를 이 이론에 근거하여 분석한다.

  • PDF

초등학교 수학과 교육과정에 근거한 도형영역 교수단위 추출 연구

  • 김현미
    • 한국초등수학교육학회:학술대회논문집
    • /
    • 한국초등수학교육학회 2010년 학술발표대회 논문집
    • /
    • pp.143-156
    • /
    • 2010
  • 사회가 변화함에 따라 수학교육과정도 변화를 거듭하고 있으며, 이러한 변화에 잘 대처하기 위해서 교사는 수학교육의 방향에 대한 깊이 있는 성찰과 함께 수학, 교육학, 심리학 등 수학교육과 관련된 학문에 대한 이해가 필요하다. 이러한 교사에 대한 시대적인 요구에 능동적으로 대처하는 방안으로 Wittmann(1984)은 수학교과의 특성상 변하지 않는 요소들을 교수단위(Teaching Units)라 하고, 수학교육을 통합시키는 개념으로 교수단위이론으로 제시하였다. 교수단위는 수학에서 가르쳐야 할 내용들을 목적, 자료, 활동, 배경 등의 4요소에 따라 작은 단위로 조직화한 것으로, 이를 통해 수학연구자나 교사는 가르쳐야 할 내용에 대한 구조적인 이해와 체계적인 조직화를 도모할 수 있게 되어 나아가 사회의 변화에 대응할 수 있게 된다. 본 연구에서는 2007년 개정 수학과 교육과정 도형영역의 교수단위를 학년별로 추출하고, 추출된 교수단위의 특징과 제목을 분석하였다. 이를 통해 교수단위가 수학교육과정연구에 어떻게 활용될 수 있는지 그 방안을 모색해 보았다. 도형영역의 교수단위(TU)는 특징과 제목에 따라 '개념알기형', '개념적용형', '관계알기형'의 세 유형으로 분류할 수 있다. 현재의 도형영역 교육과정은 대체로 개념알기형, 개념적용형, 관계알기형의 순으로 구성되어 있으며, 개념적용형이 개념알기형보다 조금 더 많다. 이는 도형영역 교육과정이 학습한 개념을 다양한 방법을 통해 여러 활동에 적용시켜 봄으로써 도형의 개념을 좀 더 명확하게 알게 되는 초등학생의 발달단계를 고려하여 구성되었음을 알 수 있다. 이러한 교수단위(TU)는 수업자가 도형학습주제에 맞게 수업을 재구성하거나 학생들의 수준에 맞는 수준별 맞춤자료를 제작할 때 유용하게 활용될 수 있으며, 더 나아가 수학연구자들이 새로운 교육과정을 수립하고자 할 때 기초자료로 활용될 수도 있을 것이다. 교수단위는 고정불변의 것이 아니고 계속 보완되고 진화될 수 있는 모델이다. 따라서 앞으로도 많은 수학연구자나 현장교사의 참여로 교수단위가 보다 더 체계적이고 조직적으로 연구되어야 한다. 또한 추출된 교수단위를 교사나 학생들이 보다 편리하게 활용할 수 있도록 컴퓨터용 소프트웨어로 개발하려는 후속 연구가 필요하다.

  • PDF

수학적 연결성을 고려한 수 체계의 지도에 관한 연구 (A study on teaching the system of numbers considering mathematical connections)

  • 정영우;김부윤;표성수
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제25권2호
    • /
    • pp.473-495
    • /
    • 2011
  • 중등학교 전반에 걸쳐 항등원, 역원, 교환법칙, 결합법칙, 분배법칙이 다루어지고 있다. 이는 대수적 구조의 조장으로 이들익 성립 여부에 따라 군, 환, 체로 결정되게 된다. 그런데 이을 대수적 구조의 조건들은 어떤 의미를 가지며, 이들 조건들이 만족됨에 따라 정해지는 대수적 구조는 어떤 의미를 가지는지 의외에 대한 지도는 이루어지고 있지 않다. 그로인해 학생들은 이들 조건을 대상 집합의 특성이라는 결과적 측면으로 받아들이고 있다. 본 연구에서는 수 체계와 다항방정식의 해법과의 연결성을 고려하여 이러한 조건들파 대수적 구조의 의의를 교수학적으로 조직화하기로 한다. 교수학적 조직화란 학습자의 자연스러운 사고활동을 위한 모델을 구성하는 것으로 역사적 발생과 함께 현대수학의 관점을 고려하여 수학적 개념이 필연성과 개연성을 가진 산물임을 경험시키도록 흐름을 구성하는 것이다. 이를 위해 본 연구에서는 다항방정식의 해법을 보장하기 위한 수학적 개념으로 대수적 구조를 파악하고, 수 체계의 의미를 지도하는 영재교육을 위한 프로그램을 개발하였다. 그리고 이를 교수실험 하여 그 효용성을 알아보았다.

정의의 '정의'를 어떻게 가르칠 것인가? (How can we teach the 'definition' of definitions?)

  • 이지현
    • 한국학교수학회논문집
    • /
    • 제16권4호
    • /
    • pp.821-840
    • /
    • 2013
  • 중학교 기하에서 등장하는 도형의 정의는 그 모양에서 시각적으로 확인할 수 있는 단순한 용어의 뜻으로만 생각하기 쉽다. 그러나 도형의 정의에 대한 낮은 이해도는 이와 같은 도형 정의에 대한 도구적 이해의 한계를 보여주고 있다. 이 연구는 영재중학생들을 대상으로, Freudenthal이 주장했던 도형 성질의 논리적 조직화에 의한 정의의 재발명과정을 구체적으로 실행하여 분석하였다. 그 결과 영재 학생 중 상당수가 도형 성질의 논리적 조직화 경험을 통하여, 도형을 왜 그렇게 정의하는 것인가, 또 다른 성질로는 정의할 수 없는가와 같은 도형 정의의 관계적 이해와 관련된 질문에 대해 깊이 이해하고 있음을 확인할 수 있었다. 이 연구에서 분석한 논리적 조직화에 의한 정의의 재발명과정은 중학교 기하교육의 문제를 반성하고 새로운 대안을 모색하는데 도움이 될 수 있을 것이다.

  • PDF

초등학교 수학과 교육과정에 근거한 교수단위 추출 연구 (Extracting Teaching Units Based on the Elementary School Mathematics Curriculum)

  • 강완;김남준
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제20권1호
    • /
    • pp.45-56
    • /
    • 2010
  • 이 연구는 독일의 수학교육학자인 Wittmann(1984)이 제시한 교수단위 이론에 근거하여 우리나라의 초등학교 수학과 교육과정을 분석한 것이다. 교수단위는 수학에서 가르쳐야 할 내용들을 목적, 자료, 활동, 배경 등의 4 요소에 따라 알갱이 단위로 조직화한 것으로, 수학연구자나 교사는 교수단위를 통해 가르쳐야 할 내용에 대한 구조적인 이해와 체계적인 조직화를 도모할 수 있다. 본 연구에서는 2007년 개정 수학과 교육과정을 중심으로 교수단위를 추출하는 과정을 단계적으로 제시하였으며, 이를 통해 교육과정을 분석하고 연구하는 새로운 대안적 방법을 제시하였다. 교수단위는 고정불변의 것이 아니고, 연구자에 의해 계속 보완되고 진화하는 모델이다. 많은 수학연구자나 현장교사의 참여로 교수단위가 개발, 조직되고, 이를 기반으로 새로운 교육과정을 수립하는 데 중요한 자료로 활용될 수 있다.

  • PDF

수학적 추론의 본질에 관한 연구 (A Study on the Nature of the Mathematical Reasoning)

  • 서동엽
    • 한국초등수학교육학회지
    • /
    • 제14권1호
    • /
    • pp.65-80
    • /
    • 2010
  • 본 연구는 고대 그리스 시대의 수학적 추론의 발달 과정을 통하여 그 본질과 지도 방안을 탐색해 보고자 하였다. 먼저 문헌 연구로서 고대 그리스 시대의 수학적 추론의 발달 과정에 대한 Netz의 분석을 살펴보았고, Freudenthal의 국소적 조직화 이론과의 관련성을 분석해 보았다. 분석 결과 수학적 추론에서 용어와 기호가 자연 언어 중심으로 되는 것이 적절한 것으로 파악되었으며, 학생들의 직관에 근거하여 수학적 필연성을 형성하게 하는 지도 방안이 적절한 것으로 생각된다. 또한 다각형의 내각의 합을 소재로 귀납에 의한 발견과 정당화, 나아가 다각형으로의 일반화라는 패턴에 따른 지도 계열과 방안을 제시하였다.

  • PDF

고등학교 수학영재와 일반학생의 수학적 사고력의 비교 (Difference between Gifted and Regular High School Students in Mathematical Thinking Ability)

  • 황동주;이강섭
    • 영재교육연구
    • /
    • 제21권4호
    • /
    • pp.847-860
    • /
    • 2011
  • 이 연구에서는 고등학교 수학영재와 일반학생들의 수학적 사고력의 차이를 알아보았다. 이를 위하여 9개의 문항으로 구성된 수학적 사고력 검사를 353명의 일반계 고등학교 1학년 학생과 192명의 과학 고등학교 1학년 학생에게 실시하였다. 그 결과 수학적 사고력의 하위요소인 정보의 조직화 능력, 시각화/공간화 능력 및 직관적 통찰 능력이 수학영재와 일반학생을 구분하는 중요한 특성임을 추출하였다.