• Title/Summary/Keyword: 수학적 조직화

Search Result 24, Processing Time 0.02 seconds

학습 구조차트 구성을 통한 수학수업이 고등학생들의 학업에 미치는 영향

  • Baek, Eun-Jeong
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.161-166
    • /
    • 2003
  • 본 연구는 학습 구조차트 구성을 통하여 고등학교 수학의 학습내용을 구조적 ${\cdot}$ 체계적으로 조직화시켜 학생들로 하여금 학습 내용의 효과적인 이해와 상호 관련성을 촉진시키고 학습 내용의 조직화 및 구조화 활동이 고등학생들의 학업에 미치는 영향을 조사하는데 그 목적이 있다. 본 연구에 따르면 수학 학업성취도가 상인 학생은 문제풀이시 머릿속에서 차트를 그리게 되고 여러 가지 개념을 나열하여 조작할 수 있는 능력이 생겼으며 문제 유형에 맞춘 학습 보다는 어떤 개념들이 문제풀이에 사용되었으며 이러한 개념들이 어떻게 나열되는지에 대한 학습으로 관심이 전환되었다. 수학학업 성취도가 하인 학생들은 학습 구조차트의 구성에만 만족하는 편이며 선행지식의 부족으로 복합적인 개념의 문제풀이에 있어서는 여전히 어려움을 경험하고 있었다. 성적이 낮은 학생일수록 개념에 대한 구조화와 조직화에 대한 어려움이 많은 것으로 보여 이들 학생들에 대한 장기적인 연구가 필요하다고 본다.

  • PDF

The Vicious Circle in Calculating Circle Area and the Local Organization (원의 넓이에 관련된 순환논법과 국소적 조직화)

  • Choi, Young-Gi;Hong, Gap-Ju
    • School Mathematics
    • /
    • v.8 no.3
    • /
    • pp.291-300
    • /
    • 2006
  • Proofs in school mathematics are regarded as the procedures to examine a proposition's truth or falsehood. However, they are not based on an axiomatic system in general. This implies the possible existence of vicious circles in proofs in school mathematics. The concept of proof can be more completely acquired when accompanied with concept of circular reasoning and necessity of axiomatic system. Therefore, it is necessary to discuss on the axiomatic system in school mathematics curriculum. The vicious circle can be found in computing an area of a circle by using definite integral in differentiation/integration part of high school textbooks. This paper will first illustrate this in detail and then offer several comments on the axiomatic methods related to the dissolution of that circular reasoning. To further the discussion, Archimedes' derivation for the area of a circle will be considered next. Finally, several arguments on circular reasoning, local organization, and axiomatic system in school curriculum will be presented at the end of the paper.

  • PDF

Imagining the Reinvention of Definitions : an Analysis of Lesson Plays ('정의'의 재발명을 상상하다 : Lesson Play의 분석)

  • Lee, Ji Hyun
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.667-682
    • /
    • 2013
  • Though teachers' lesson plays, this article analysed teachers' knowledge for mathematical teaching about mathematical definitions and their pedagogical difficulties in teaching defining. Although the participant teachers didn't transmit definitions to students and suggested possible definitions of the given geometric figure in their imaginary lessons, they didn't teach defining as deductive organization of properties of the geometric figure. They considered mathematical definition as a mere linguistic convention of a word, so they couldn't appreciate the necessity of deductive organization in teaching definitions, and the arbitrary nature of mathematical definitions. Therefore, for learning to teach definitions differently, it is necessary for teachers to reflect the gap between the everyday and mathematical definitions in teachers'education.

  • PDF

Toward Teaching of the Limit of Sequences Based on the Anthropological Method (인류학적 방법에 입각한 수열의 극한 교수에 대하여)

  • Kim, Boo-Yoon;Chung, Gyeong-Mee
    • School Mathematics
    • /
    • v.11 no.4
    • /
    • pp.707-722
    • /
    • 2009
  • Various theories of mathematics education which have been considered by many European researchers particularly, in France, recently are introduced. The Anthropological Theory of the didactic discussed by Chevallard will be briefly introduced. Then the praxeology as Anthropological model according to Chevallard's theory will be discussed. The necessity of Anthropological Theory, its background of development through transition process of didactic, and its basic elements will be discussed further. Additionally, teaching limit of sequences in high school mathematics will be suggested according to the theory.

  • PDF

초등학교 수학과 교육과정에 근거한 도형영역 교수단위 추출 연구

  • Kim, Hyeon-Mi
    • Proceedings of the Korea Society of Elementary Mathematics Education
    • /
    • 2010.08a
    • /
    • pp.143-156
    • /
    • 2010
  • 사회가 변화함에 따라 수학교육과정도 변화를 거듭하고 있으며, 이러한 변화에 잘 대처하기 위해서 교사는 수학교육의 방향에 대한 깊이 있는 성찰과 함께 수학, 교육학, 심리학 등 수학교육과 관련된 학문에 대한 이해가 필요하다. 이러한 교사에 대한 시대적인 요구에 능동적으로 대처하는 방안으로 Wittmann(1984)은 수학교과의 특성상 변하지 않는 요소들을 교수단위(Teaching Units)라 하고, 수학교육을 통합시키는 개념으로 교수단위이론으로 제시하였다. 교수단위는 수학에서 가르쳐야 할 내용들을 목적, 자료, 활동, 배경 등의 4요소에 따라 작은 단위로 조직화한 것으로, 이를 통해 수학연구자나 교사는 가르쳐야 할 내용에 대한 구조적인 이해와 체계적인 조직화를 도모할 수 있게 되어 나아가 사회의 변화에 대응할 수 있게 된다. 본 연구에서는 2007년 개정 수학과 교육과정 도형영역의 교수단위를 학년별로 추출하고, 추출된 교수단위의 특징과 제목을 분석하였다. 이를 통해 교수단위가 수학교육과정연구에 어떻게 활용될 수 있는지 그 방안을 모색해 보았다. 도형영역의 교수단위(TU)는 특징과 제목에 따라 '개념알기형', '개념적용형', '관계알기형'의 세 유형으로 분류할 수 있다. 현재의 도형영역 교육과정은 대체로 개념알기형, 개념적용형, 관계알기형의 순으로 구성되어 있으며, 개념적용형이 개념알기형보다 조금 더 많다. 이는 도형영역 교육과정이 학습한 개념을 다양한 방법을 통해 여러 활동에 적용시켜 봄으로써 도형의 개념을 좀 더 명확하게 알게 되는 초등학생의 발달단계를 고려하여 구성되었음을 알 수 있다. 이러한 교수단위(TU)는 수업자가 도형학습주제에 맞게 수업을 재구성하거나 학생들의 수준에 맞는 수준별 맞춤자료를 제작할 때 유용하게 활용될 수 있으며, 더 나아가 수학연구자들이 새로운 교육과정을 수립하고자 할 때 기초자료로 활용될 수도 있을 것이다. 교수단위는 고정불변의 것이 아니고 계속 보완되고 진화될 수 있는 모델이다. 따라서 앞으로도 많은 수학연구자나 현장교사의 참여로 교수단위가 보다 더 체계적이고 조직적으로 연구되어야 한다. 또한 추출된 교수단위를 교사나 학생들이 보다 편리하게 활용할 수 있도록 컴퓨터용 소프트웨어로 개발하려는 후속 연구가 필요하다.

  • PDF

A study on teaching the system of numbers considering mathematical connections (수학적 연결성을 고려한 수 체계의 지도에 관한 연구)

  • Chung, Young-Woo;Kim, Boo-Yoon;Pyo, Sung-Soo
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.473-495
    • /
    • 2011
  • Across the secondary school, students deal with the algebraic conditions like as identity, inverse, commutative law, associative law and distributive law. The algebraic structures, group, ring and field, are determined by these algebraic conditions. But the conditioning of these algebraic structures are not mentioned at all, as well as the meaning of the algebraic structures. Thus, students is likely to be considered the algebraic conditions as productions from the number sets. In this study, we systematize didactically the meanings of algebraic conditions and algebraic structures, considering connections between the number systems and the solutions of the equation. Didactically systematizing is to construct the model for student's natural mental activity, that is, to construct the stream of experience through which students are considered mathematical concepts as productions from necessities and high probability. For this purpose, we develop the program for the gifted, which its objective is to teach the meanings of the number system and to grasp the algebraic structure conceptually that is guaranteed to solve equations. And we verify the effectiveness of this developed program using didactical experiment. Moreover, the program can be used in ordinary students by replacement the term 'algebraic structure' with the term such as identity, inverse, commutative law, associative law and distributive law, to teach their meaning.

How can we teach the 'definition' of definitions? (정의의 '정의'를 어떻게 가르칠 것인가?)

  • Lee, Jihyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.4
    • /
    • pp.821-840
    • /
    • 2013
  • Definition of geometric figure in middle school geometry seems to mere meaning of the term which could be perceived visually through its shape. However, Much research reported the low achievements of definitions of basic geometric figures. It suggested the limitation of instrumental understanding. In this research, I guided gifted middle school students to reinvent definitions of basic geometric figure by the deductive organization of its properties as Freudenthal pointed. These students understood relationally about why some geometric figure can be defined this way and how it could be defined equally via other properties. This analysis of reinventing of definitions will be a stepping stone to reflect on the pedagogical problems in teaching geometry and to search the new alternatives.

  • PDF

Extracting Teaching Units Based on the Elementary School Mathematics Curriculum (초등학교 수학과 교육과정에 근거한 교수단위 추출 연구)

  • Kang, Wan;Kim, Nam-Jun
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • This research analyzes the elementary school mathematics curriculum in Korea in accordance with the teaching units devised by the German mathematics pedagogue, Wittmann(1984). Teaching units, a systematic teaching content organized according to the 4 elements of objectives, data, functions, and backgrounds, helps educators and professors plot for the systematic organization and structural understanding of the materials necessary in teaching. This research presents the extracting process of teaching units step by step based on the 2007 revised mathematics curriculum and also demonstrates the new alternative method to analyze and review the entire education courses through it. Teaching units is not immutable, but rather pursuing and developing a model that consistently through the constant complementary efforts by the research experts. On that account, many researchers and field professors continuously devote their efforts to develop and innovate it so that it can be practically used as an essential tool to establish a new mathematics curriculum.

  • PDF

A Study on the Nature of the Mathematical Reasoning (수학적 추론의 본질에 관한 연구)

  • Seo, Dong-Yeop
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.1
    • /
    • pp.65-80
    • /
    • 2010
  • The aims of our study are to investigate the nature of mathematical reasoning and the teaching of mathematical reasoning in school mathematics. We analysed the process of shaping deduction in ancient Greek based on Netz's study, and discussed on the comparison between his study and Freudenthal's local organization. The result of our analysis shows that mathematical reasoning in elementary school has to be based on children's natural language and their intuitions, and then the mathematical necessity has to be formed. And we discussed on the sequences and implications of teaching of the sum of interior angles of polygon composed the discovery by induction, justification by intuition and logical reasoning, and generalization toward polygons.

  • PDF

Difference between Gifted and Regular High School Students in Mathematical Thinking Ability (고등학교 수학영재와 일반학생의 수학적 사고력의 비교)

  • Hwang, Dong-Jou;Lee, Kang-Sup
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.847-860
    • /
    • 2011
  • In this study, the instrument of mathematical thinking ability tests were considered, and the differences between gifted and regular high school students in the ability were investigated by the test. The instrument consists of 9 items, and verified its quality due to reliability. Participants were 353 regular and 252 gifted high school students from tenth grade. As a result, not only organizing ability of information but also ability of space perception and visualization and intuitive insight ability could be the characteristics of the mathematical giftedness.