• Title/Summary/Keyword: 수학적 모델화

Search Result 287, Processing Time 0.018 seconds

The Role of Spreadsheet in Model Refinement in Mathematical Modeling Activity (수학적 모델링에서 스프레드시트 환경이 수학적 모델의 정교화 과정에 미치는 역할)

  • Son, Hong-Chan;Lew, Hee-Chan
    • School Mathematics
    • /
    • v.9 no.4
    • /
    • pp.467-486
    • /
    • 2007
  • In mathematical modeling activity modeling process is usually an iterative process. When model can not be solved, the model needs to be simplified by treating some variables as constants, or by ignoring some variables. On the other hand, when the results from the model are not precise enough, the model needs to be refined by considering additional conditions. In this study we investigate the role of spreadsheet model in model refinement and modeling process. In detail, we observed that by using spreadsheet model students can solve model which can not be solved in paper-pencil environment. And so they need not go back to model simplification process but continue model refinement. By transforming mathematical model to spreadsheet model, the students can predict or explain the real word situations directly without passing the mathematical conclusions step in modeling process.

  • PDF

A Study on a Modelling Process for Fitting Mathematical Modeling (수학적 모델링의 정교화 과정 연구)

  • Kang, Ok-Ki
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.1
    • /
    • pp.73-84
    • /
    • 2010
  • Mathematical modeling is an important part of mathematics education since it can be used or created to find mathematical models to understand real life various situations. Most of mathematical modeling tasks taught and learned currently in secondary school mathematics classes need simple mathematical modelling with one or two variables and produce fixed solutions to the real life problems. But many real life problems involve various and complex variables which can be used to get more proper solutions. Constructing mathematical models to get more appropriate solutions from the real problems having various and complex variables is not easy. In this paper the researcher suggested a model to fit mathematical models to get more appropriate solutions and showed three examples to apply the model in solving real life problems which can be treated in the secondary school mathematics classrooms.

  • PDF

신경의 전기적 모델화

  • 박상희;이명호
    • 전기의세계
    • /
    • v.24 no.5
    • /
    • pp.6-15
    • /
    • 1975
  • 본 고찰은 신경의 생리적 현상을 기능적 측면에서 아나로그 모델로 시뮬레이션 시켜가는 데 있어 모델화의 역사적 발달과정과 기존모델의 특성을 간략하게 요약하고 이들을 비교 검토한 것으로 초기의 모델화에 대한 철학적인 개념으로부터 TR, IC등의 전자부품을 사용한 최근의 모델에 이르기까지 많은 기존모델을 다루어 본 결과 다음과 같은 결론을 얻을 수 있었다. 1. 역사적 발달과정에도 잘 나타난 것처럼 전기, 화학, 역학, 수학등 여러분야의 전문적 지식의 교환없이는 모델화의 정확성, 분석상의 신뢰도, 결과에 대한 보편성이 결여되기 쉽다. 2. 특히 생리적 특성 및 수학적인 면밀한 고찰과 분석이 요구되고 있다. 이는 모델의 특성 결과에 대한 디지탈 전자계산기를 이용한 통계적 처리와 시뮬레이션을 용이하게 할 수 있고, 임상에의 이용 가능성을 높여나가기 위해서이다. 3. 신경 전체에 대한 모델화에 앞서 신경의 구조별 모델화가 선행되어야 한다. 이는 신경의 구조중 수상돌기 및 soma에서의 synaptic inputs에 대한 위치변화에 따른 synaptic potential의 분포상태가 신경의 특성을 규명하는데 매우 유익하다는 사실이 밝혀졌기 때문이다. 4. 신경에서의 synaptic potential의 분포상태는 종전에는 temporal distribution 개념이 지배적이었으나 최근에 와서는 spatial distribution 개념이 우세하게 되었다.

  • PDF

A Case Study on a Model Refinement in Mathematical Modeling Process (중학생의 수학적 모델링 정교화 과정에 관한 사례 연구)

  • Park, Sle Hee;Shin, Jaehong;Lee, Soo Jin
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.657-677
    • /
    • 2014
  • The present qualitative case study explored the ways in which three middle school students constructed and refined their mathematical models and modeling processes, and factors that had influenced such refinement. The results suggest that students' modeling processes are non-sequential in that the participant students reformulated their initial problem from the real-world problem situation and revised the model when they could not get a satisfactory solution or the acquired solution did not make sense. Moreover, the students' model refinement processes were affected by the following four elements: the types of real-word problem situations, students' metacognitive thinking, communications between teachers and peers, and the role of teachers.

  • PDF

Mathematical Elaboration Process of the Elementary Gifted Children's Board Game Re-creation in Group Project (모둠별 게임 변형을 통한 초등수학영재들의 수학적 정교화 과정 분석)

  • Sung, Ye Won;Song, Sang Hun
    • School Mathematics
    • /
    • v.15 no.3
    • /
    • pp.619-632
    • /
    • 2013
  • One area where research is especially needed is their elaboration process and how they elaborate their idea as a group in a mathematical board game re-creation project. In this research, this process was named 'Mathematical Elaboration Process'. The purpose of this research is to understand how the gifted children elaborate their idea in a small group, and which idea can be chosen for a new board game when they are exposed to a project for making new mathematical board games using the what-if-not strategy. One of the gifted children's classes was chosen in which there were twenty students, and the class was composed of four groups in an elementary school in Korea. The researcher presented a series of re-creation game projects to them during the course of five weeks. To interpret their process of elaborating, the communication of the gifted students was recorded and transcribed. Students' elaboration processes were constructed through the interaction of both the mathematical route and the non-mathematical route. In the mathematical route, there were three routes; favorable thoughts, unfavorable thoughts and a neutral route. Favorable thoughts was concluded as 'Accepting', unfavorable thoughts resulted in 'Rejecting', and finally, the neutral route lead to a 'non-mathematical route'. Mainly, in a mathematical route, the reason of accepting the rule was mathematical thinking and logical reasons. The gifted children also show four categorized non-mathematical reactions when they re-created a mathematical board game; Inconsistency, Liking, Social Proof and Authority.

  • PDF

A design of teaching units for experiencing mathematising of secondary pre-service teachers: Inquiry into number partition models (예비중등교사의 수학화 경험을 위한 교수단원의 설계: 수 분할 모델의 탐구)

  • Kim, Jin-Hwan;Park, Kyo-Sik
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.1
    • /
    • pp.57-76
    • /
    • 2006
  • In this paper, we generalized number partion problems in elementary situations to number partition models that provide some mathematical problem situations for experiencing mathematising of secondary pre-service teachers. We designed substantial teaching units entitled 'the inquiry intof number partition models' through 4 steps: (1) key problems, (2) integration from the view of partition, (3) defining partition (4) a real practice of inquiry into models. This teaching unit can contribute to secondary pre-service teacher education as follows: first, This teaching unit have pre-service teachers experience mathemtising. second, This teaching unit have pre-service teachers see the connection between school mathematics and academic mathematics. third, This teaching unit have pre-service teachers foster their mathematical creativity.

  • PDF

Development and Application of Teaching-Learning Materials for Mathematically-Gifted Students by Using Mathematical Modeling -Focus on Tsunami- (중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수.학습 자료의 개발 및 적용: 쓰나미를 소재로)

  • Seo, Ji Hee;Yeun, Jong Kook;Lee, Kwang Ho
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.785-799
    • /
    • 2013
  • The researchers developed the teaching-learning materials for 9th grade mathematically gifted students in terms of the hypothesis that the students would have opportunity for problem solving and develop various mathematical thinking through the mathematical modeling lessons. The researchers analyzed what mathematical thinking abilities were shown on each stage of modeling process through the application of the materials. Organization of information ability appears in the real-world exploratory stage. Intuition insight ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the pre-mathematical model development stage. Mathematical abstraction ability, spatialization/visualization ability, mathematical reasoning ability and reflective thinking ability appears in the mathematical model development stage. Generalization and application ability and reflective thinking ability appears in the model application stage. The developed modeling assignments have provided the opportunities for mathematically-gifted students' mathematical thinking ability to develop and expand.

  • PDF

Development of Shelf-life Prediction Model of Tofu Using Mathematical Quantitative Assessment Model (수학적 정량평가 모델을 이용한 두부의 유통기한 예측 모델의 개발)

  • Shin Il-Shik
    • Food Industry And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • 식물성 단백질의 주요 공급원이며 우리나라 전통식품 중의 하나인 두부의 유통기한을 정량적으로 예측할 수 있는 수학적 모델을 개발하고자 온도와 초기균수에 따른 두부 부패세균의 성장 실험 결과를 데이터베이스화하여 이를 바탕으로 균의 성장을 정량적으로 평가할 수 있는 수학적 모델을 개발하였다. 근의 증식 지표인 최대증식속도상수(k), 유도기(LT), 세대시간(GT)은 온도에 지배적인 영향을 받았으며, 초기균수에 따른 유의 적 인 차이 는 없었다(p<0.05). 최대증식속도상수와 온도 및 초기균수의 상관관계를 나타내는 수학적 정량평가모델인 square root model을 이 용하여 두부 부패 세균의 성장을 정량적으로 예측할 수 있는 모델$({\surd}{\kappa}=0.016861(T+6.87095))$을 개발하였으며 실험치와 예측치의 상관계수는0.969이었다. 이 예측 정량평가모델로부터 예측한 최대증식속도상수와 두부의 관능적 부패시 점을 반영 한 Gompertz 변형 모델을 이용하여 두부의 유통기한을 예측할 수 있는 모델$(Spoilage-critrion(hr)=\frac{2{\times}Ln2+Ln[(Nmax/No)-1])}{k}$을 개발하였다

  • PDF

Electrical Characteristics and Mathematical Model of Amorphous Silicon Thin Film Transistor for Flat Panel Display (평판 표시기용 비정질 실리콘 박막 트랜지스터의 전기적인 특성과 수학적인 모델)

  • 최창주;이우선;김병인
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.5
    • /
    • pp.49-55
    • /
    • 1994
  • 평판 디스플레이용 비정질 실리콘 박막 트랜지스터의 전기적인 특성과 수학적인 모델에 대하여 연구되었고 이론적인 모델은 실험을 통하여 그 타당성을 입증하였다. 게이트전압이 고정된 상태에서 드레인 전압 증가에 따른 드레인 포화전류는 증가되었고 디바이스의 포화는 드레인 전압이 증가될수록 더 증가되었으며 문턱전압은 감소되었다. 세 개의 변수로 구성된 디바이스의 전달특성과 출력특성에 대한 실험 결과값에 대한 모델식이 제시되었는데 이 모델은 디비이스의 기하학적인 구조를 간단화 하기위한 모델식이다.

  • PDF

A Semiotic Analysis on Mathematization in Mathematical Modeling Process (수학적 모델링 과정에서 수학화의 기호학적 분석)

  • Park, Jin Hyeong;Lee, Kyeong Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.95-116
    • /
    • 2013
  • Though the term "mathematical modeling" has no single definition or perspective, it is pursued commonly by groups from various perspectives who emphasize the activities of understanding and representing real phenomenon mathematically, building models to solve problems, and reinterpreting real phenomenon to make an attempt to understand the real world and related mathematical models more deeply. The purpose of this study is to identify how mathematization arises and find difficulties of mathematization in mathematical modeling process that share common features with the mathematical modeling activities as presented here. As a result of this research, we confirmed that the students mathematized real phenomena by building various representations, and interpreting them with regard to relationships and contexts inherent real phenomena. The students' communication fostered interplay between iconic representations and indexical representations. We also identified difficulties of mathematization in mathematical modeling process.

  • PDF