• 제목/요약/키워드: 수학적 모델화

검색결과 287건 처리시간 0.031초

수학적 모델링에서 스프레드시트 환경이 수학적 모델의 정교화 과정에 미치는 역할 (The Role of Spreadsheet in Model Refinement in Mathematical Modeling Activity)

  • 손홍찬;류희찬
    • 대한수학교육학회지:학교수학
    • /
    • 제9권4호
    • /
    • pp.467-486
    • /
    • 2007
  • 이 논문은 스프레드시트를 활용한 수학적 모델링에서 스프레드시트 환경이 수학적 모델의 정교화과정에 어떤 영향을 미치는 지를 고찰한 것이다. 좀 더 자세히 살피면 수학적 모델링에서 스프레드시트 모델의 활용은 학생이 분석 불가능한 수학적모델도 분석할 수 있도록 해줌으로써 모델을 단순화하지 않고, 대신 모델을 정교화 할 수 있는 기회를 제공하고 수학적 개념을 확장해 나갈 수 있음을 보였다. 또한 수학적 모델을 스프레드시트 모델로 변환하여, 수학적 모델로부터 수학적 결론을 얻는 단계를 거치지 않고도 실세계 상황을 해석하고 설명할 수 있는 기회를 제공할 수 있음을 보였다.

  • PDF

수학적 모델링의 정교화 과정 연구 (A Study on a Modelling Process for Fitting Mathematical Modeling)

  • 강옥기
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제20권1호
    • /
    • pp.73-84
    • /
    • 2010
  • 학교수학에서 다루는 수학적 모델링의 일반적인 특성은 하나의 실제적인 문제를 해결하기 위하여 수학적 모델을 도입하고 이를 풀어서 실제적인 문제에 답을 제시하는 일회적인 경우가 많다. 그러나 실제적인 문제는 일회적인 모델링으로는 해결되지 않거나 그 해가 충분히 정밀하지 못한 경우가 있다. 본 연구는 여러 가지 변인을 가진 실제적인 문제를 해결하기 위해 수학적 모델을 구성할 경우, 구성한 수학적 모델의 해의 의미성을 분석해 보고 필요하면 더욱 정교한 해를 구할 수 있는 모델로 나아가는 수학적 모델링의 정교화 과정 모형을 구안하였다. 또한 그것을 수학교실에서 활용할 수 있는 수학적 모델링의 예를 제시함으로써 학교수학에서 수학적 모델링의 정교화를 다룰 수 있게 하였다.

  • PDF

신경의 전기적 모델화

  • 박상희;이명호
    • 전기의세계
    • /
    • 제24권5호
    • /
    • pp.6-15
    • /
    • 1975
  • 본 고찰은 신경의 생리적 현상을 기능적 측면에서 아나로그 모델로 시뮬레이션 시켜가는 데 있어 모델화의 역사적 발달과정과 기존모델의 특성을 간략하게 요약하고 이들을 비교 검토한 것으로 초기의 모델화에 대한 철학적인 개념으로부터 TR, IC등의 전자부품을 사용한 최근의 모델에 이르기까지 많은 기존모델을 다루어 본 결과 다음과 같은 결론을 얻을 수 있었다. 1. 역사적 발달과정에도 잘 나타난 것처럼 전기, 화학, 역학, 수학등 여러분야의 전문적 지식의 교환없이는 모델화의 정확성, 분석상의 신뢰도, 결과에 대한 보편성이 결여되기 쉽다. 2. 특히 생리적 특성 및 수학적인 면밀한 고찰과 분석이 요구되고 있다. 이는 모델의 특성 결과에 대한 디지탈 전자계산기를 이용한 통계적 처리와 시뮬레이션을 용이하게 할 수 있고, 임상에의 이용 가능성을 높여나가기 위해서이다. 3. 신경 전체에 대한 모델화에 앞서 신경의 구조별 모델화가 선행되어야 한다. 이는 신경의 구조중 수상돌기 및 soma에서의 synaptic inputs에 대한 위치변화에 따른 synaptic potential의 분포상태가 신경의 특성을 규명하는데 매우 유익하다는 사실이 밝혀졌기 때문이다. 4. 신경에서의 synaptic potential의 분포상태는 종전에는 temporal distribution 개념이 지배적이었으나 최근에 와서는 spatial distribution 개념이 우세하게 되었다.

  • PDF

중학생의 수학적 모델링 정교화 과정에 관한 사례 연구 (A Case Study on a Model Refinement in Mathematical Modeling Process)

  • 박슬히;신재홍;이수진
    • 한국학교수학회논문집
    • /
    • 제17권4호
    • /
    • pp.657-677
    • /
    • 2014
  • 본 연구의 목적은 실험수업에 참여한 세 명의 중학교 1학년 학생들의 모델 정교화 과정을 질적 사례연구를 통하여 살펴보고 모델 정교화에 영향을 미치는 요인을 분석하여 이에 관한 정보를 제공하고자 함이다. 분석 결과 학생들의 수학적 모델링의 정교화 과정은 각 단계가 단선적으로 일어나는 것이 아니라 모델 내에서 해를 구할 수 없거나 구한 해가 의미가 없는 경우 실제 문제 구성 단계로 돌아가 실제 문제를 수정하거나 수학적 모델 구성 단계로 돌아가 모델을 수정 또는 정교화하는 것을 알 수 있었으며, 모델 정교화 과정에 영향을 미치는 요인으로는 모델링 문제, 메타인지적 사고, 교사 동료와의 의사소통 및 교사의 역할 등이 복합적으로 작용함이 나타났다.

  • PDF

모둠별 게임 변형을 통한 초등수학영재들의 수학적 정교화 과정 분석 (Mathematical Elaboration Process of the Elementary Gifted Children's Board Game Re-creation in Group Project)

  • 성예원;송상헌
    • 대한수학교육학회지:학교수학
    • /
    • 제15권3호
    • /
    • pp.619-632
    • /
    • 2013
  • 본 연구는 초등수학영재들이 수학적 소재의 기존 게임을 변형하여 새로운 게임을 만들어가는 동안 모둠내 토론 과정에서 드러나는 수학적 정교화 과정을 분석하고 이를 모델화한 것이다. 이를 위해 한 개의 지역공동영재학급에서 5주간의 수업을 진행하였으며, 특히 게임의 변형의 아이디어를 모둠별로 모아가는 수학적 정교화 과정을 모델로 구안하고자 하였다. 정교화 과정에서 수학적 경로와 수학외 경로가 상호작용을 하는 이중 경로의 모습을 띄었으며, 수학적(논리적) 근거에 따라 3가지의 수학적 경로(호의, 비호의, 중립)와 4 가지의 수학외 경로(비일관성, 사회적 증거, 호감, 권위)으로 분석할 수 있었다. 이 과정에서 수시로 통찰이 일어났으며, 이 과정을 거쳐 수학적 규칙이 모둠에서 수렴되는 정교화의 모습을 볼 수 있었다. 이를 바탕으로 초등수학영재들이 모둠별로 게임을 변형하는 과정에서 보이는 수학적 정교화 과정을 분석하고 수학적 정교화 모델을 제안하였다.

  • PDF

예비중등교사의 수학화 경험을 위한 교수단원의 설계: 수 분할 모델의 탐구 (A design of teaching units for experiencing mathematising of secondary pre-service teachers: Inquiry into number partition models)

  • 김진환;박교식
    • 한국학교수학회논문집
    • /
    • 제9권1호
    • /
    • pp.57-76
    • /
    • 2006
  • 본 연구에서는 예비중등교사의 수학화 경험을 위해, 초보적인 상황의 문제를 기반으로 수를 분할하는 문제로 일반화하여, 수의 분할에 관한 일련의 문제 및 상황을 제공하는데 적절한 수 분할 모델을 고안하고, 그것을 탐구하는 교수단원 <분할 모델의 탐구>를 Wittmann의 교수단원 사상에 따라 설계한다. 이 연구에서 설계하는 <분할 모델의 탐구>는 (1) 실마리 문제 (2) 분할 관점에서의 통합 (3) 분할 모델의 정의 (4) 분할 모델을 활용한 탐구의 네 단계로 이루어진다. 이 교수단원이 예비중등수학 교사교육에 기여할 수 있는 바는 다음과 같다. 첫째, 예비교사들로 하여금 수학화를 경험할 수 있게 해준다. 둘째, 예비교사들로 하여금 학교수학과 학문수학의 연결을 볼 수 있게 한다. 셋째, 에비교사들의 수학적 창의력을 기르는데 도움이 될 수 있다.

  • PDF

중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수.학습 자료의 개발 및 적용: 쓰나미를 소재로 (Development and Application of Teaching-Learning Materials for Mathematically-Gifted Students by Using Mathematical Modeling -Focus on Tsunami-)

  • 서지희;윤종국;이광호
    • 대한수학교육학회지:학교수학
    • /
    • 제15권4호
    • /
    • pp.785-799
    • /
    • 2013
  • 본 연구는 수학적 모델링 수업이 수학 영재 학생들에게 문제해결의 기회를 제공하고 수학적 모델링 활동을 통해 다양한 수학적 사고력을 발전시킬 수 있다는 가정 하에 중학교 3학년 수학 영재 학생들을 위한 수학적 모델링 교수 학습 자료를 개발하였다. 개발된 교수 학습 자료를 적용하여 사례연구를 통해 수학적 모델링의 단계별 활동과정을 살펴보고 각 단계에서 어떠한 수학적 사고능력이 나타나는지 분석하였다. 수학적 모델링 과정에서 다양한 수학적 사고능력이 나타났는데 문제를 이해하는 실세계 탐구과정에서는 정보의 조직화 능력이, 상황모델을 개발하는 과정에서는 직관적 통찰능력, 공간화/시각화 능력, 수학적 추론 능력, 반성적 사고 능력이 나타났다. 수학모델 개발과정에서는 수학적 추상화 능력, 공간화/시각화 능력, 수학적 추론 능력, 반성적 사고가 나타났으며 모델적용 과정에서는 일반화 및 적용 능력과 반성적 사고가 나타났다. 모델링 수업이 진행됨에 따라 반성적 사고능력이 더 많이 나타나는 것을 확인할 수 있었다.

  • PDF

수학적 정량평가 모델을 이용한 두부의 유통기한 예측 모델의 개발 (Development of Shelf-life Prediction Model of Tofu Using Mathematical Quantitative Assessment Model)

  • 신일식
    • 식품산업과 영양
    • /
    • 제10권1호
    • /
    • pp.11-16
    • /
    • 2005
  • 식물성 단백질의 주요 공급원이며 우리나라 전통식품 중의 하나인 두부의 유통기한을 정량적으로 예측할 수 있는 수학적 모델을 개발하고자 온도와 초기균수에 따른 두부 부패세균의 성장 실험 결과를 데이터베이스화하여 이를 바탕으로 균의 성장을 정량적으로 평가할 수 있는 수학적 모델을 개발하였다. 근의 증식 지표인 최대증식속도상수(k), 유도기(LT), 세대시간(GT)은 온도에 지배적인 영향을 받았으며, 초기균수에 따른 유의 적 인 차이 는 없었다(p<0.05). 최대증식속도상수와 온도 및 초기균수의 상관관계를 나타내는 수학적 정량평가모델인 square root model을 이 용하여 두부 부패 세균의 성장을 정량적으로 예측할 수 있는 모델$({\surd}{\kappa}=0.016861(T+6.87095))$을 개발하였으며 실험치와 예측치의 상관계수는0.969이었다. 이 예측 정량평가모델로부터 예측한 최대증식속도상수와 두부의 관능적 부패시 점을 반영 한 Gompertz 변형 모델을 이용하여 두부의 유통기한을 예측할 수 있는 모델$(Spoilage-critrion(hr)=\frac{2{\times}Ln2+Ln[(Nmax/No)-1])}{k}$을 개발하였다

  • PDF

평판 표시기용 비정질 실리콘 박막 트랜지스터의 전기적인 특성과 수학적인 모델 (Electrical Characteristics and Mathematical Model of Amorphous Silicon Thin Film Transistor for Flat Panel Display)

  • 최창주;이우선;김병인
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제8권5호
    • /
    • pp.49-55
    • /
    • 1994
  • 평판 디스플레이용 비정질 실리콘 박막 트랜지스터의 전기적인 특성과 수학적인 모델에 대하여 연구되었고 이론적인 모델은 실험을 통하여 그 타당성을 입증하였다. 게이트전압이 고정된 상태에서 드레인 전압 증가에 따른 드레인 포화전류는 증가되었고 디바이스의 포화는 드레인 전압이 증가될수록 더 증가되었으며 문턱전압은 감소되었다. 세 개의 변수로 구성된 디바이스의 전달특성과 출력특성에 대한 실험 결과값에 대한 모델식이 제시되었는데 이 모델은 디비이스의 기하학적인 구조를 간단화 하기위한 모델식이다.

  • PDF

수학적 모델링 과정에서 수학화의 기호학적 분석 (A Semiotic Analysis on Mathematization in Mathematical Modeling Process)

  • 박진형;이경화
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제23권2호
    • /
    • pp.95-116
    • /
    • 2013
  • 수학적 모델링에 대한 정의와 관점은 단일하지 않다. 그러나 실세계 현상을 수학적으로 이해하여 표현하고, 모델을 세워 문제를 해결하며, 다시 실세계 현상에 대한 재해석을 통해 실세계 그리고 관련된 수학적 모델에 대한 심층적인 이해를 꾀하는 활동에 대한 강조는 수학적 모델링에 대한 여러 관점에서 공통적으로 추구하는 바이다. 이 연구는 수학적 모델링 활동에 대한 앞서 제시한 공통적인 특징을 준수할 때, 수학화가 어떻게 일어나는지, 그 과정상의 어려움은 무엇인지를 확인하는 것에 목표를 둔다. 연구 결과, 학생들은 수학적 모델링 과정에서의 수학화 활동에서 다양한 표상체를 구축하고 이를 실세계 현상의 관계적인 측면과 맥락에 비추어 해석하면서 현상을 재조직한다는 점을 확인할 수 있었으며, 이는 학생들의 의사소통 과정에 드러난 표상체의 기능 변화를 통하여 확인할 수 있었다. 또한 표상체가 적절하지 않은 단서를 제공할 수 있다는 점은 수학화를 어렵게 하는 요인으로 드러났다.

  • PDF