• Title/Summary/Keyword: 수학의 이해

Search Result 1,387, Processing Time 0.021 seconds

Levels of Elementary Mathematics Underachievers' Understanding of Place Value (초등 수학 학습부진아의 자릿값 이해 수준)

  • Chang, Hyewon;Lim, Miin;Kang, Teaseok
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.3
    • /
    • pp.347-366
    • /
    • 2015
  • There are a lot of causes of under-achievement in elementary mathematics, one of which may be lack of previous learning elements. We focus on the understanding of place value. The purpose of this study is to analyze underachievers' levels of understanding of place value concepts and to find the types of place value tasks that they have had special difficulty. For this purpose, an individual test called as "the Six Tasks of Place Value(SToPV)"was applied to ten third grade mathematics underachievers in elementary school. The test is a type of place value concept tests and requires one-on-one interview with some preparation materials. The participants' reactions were analysed according to the framework by Berman(2011). The result of analysis shows that third grade mathematics underachievers tend to have a great difficulty understanding the place value concepts. Also the types of difficult tasks were various from individual to individual. Based on the test results and discussion, we suggested some implications for diagnosing place value concepts of mathematics underachievers.

The Effect of the Fraction Comprehension and Mathematical Attitude in Fraction Learning Centered on Various Representation Activities (다양한 표상활동 중심 분수학습이 분수의 이해 및 수학적 태도에 미치는 효과)

  • Ahn, Ji Sun;Kim, Min Kyeong
    • Communications of Mathematical Education
    • /
    • v.29 no.2
    • /
    • pp.215-239
    • /
    • 2015
  • A goal of this study is figuring out how fraction learning centered on various representation activities influences the fraction comprehension and mathematical attitudes. The study focused on 33 4th-grade students of B elementary school in Seoul. In the study, 15 fraction learning classes comprising enactive, iconic, and symbolic representations took place over 6 weeks. After the classes, the ratio of the students who achieved relational understanding increased and the students averagely recorded 90 pt or more on the fraction comprehension test I, II and III. Two-dependent samples t-test was conducted to analyze a significant difference in mathematical attitudes between pre-test and post-test. On the test result, there was the meaningful difference with 0.01 level of significance. To conclude, the fraction learning centered on various representation activities improves students' relational understanding and fraction understanding. In addition, the fraction learning centered on various representation activities gives positive influences on mathematical attitudes since it increases learning orientation, self-control, interests, value cognition, and self-confidence of the students and decreases fears of the students.

The Perspective of Temporality and Atemporality and Mathematics Education (인식의 시간성-무시간성과 수학적 지식의 교육)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.3
    • /
    • pp.379-397
    • /
    • 2014
  • According to Kant, time is integral to all human cognitive experiences. Human beings perceive things in the frame of time. Phenomena are perceived in successive way or in coexistent way. In this paper, I argue that the perspective of temporality and atemporality can be a framework to consider the issues of teaching and understanding of mathematical knowledge. Significance of temporal inquiry of atemporal phenomena is discussed with examples of mathematical expressions and geometric figures. Significance of atemporal inquiry of temporal phenomena is also discussed with examples of the sum of natural numbers, geometric pattern, and the probability of two events. Teachers should understand the potential of mathematical tasks from the perspective of temporality and atemporality and provide students with opportunities to inquire temporal phenomena atemporally and atemporal phenomena temporally.

  • PDF

통계적 교수 ${\cdot}$ 학습 과정을 통한 그래프 이해력 증진에 관한 탐구

  • Park, Gyeong-Yeon;Choe, Chang-U
    • Communications of Mathematical Education
    • /
    • v.11
    • /
    • pp.107-126
    • /
    • 2001
  • 우리는 흔히 21C를 정보화 시대라고 하며 우리에게 주어지는 정보들 또한 일기예보와 같은 일상적인 분야에서 여론 조사와 같은 전문적인 분야에 이르기까지 아주 다양하다. 이런 정보들은 통계영역과 아주 밀접하며 이런 정보들을 통계적으로 바르게 해석하고 추론하여 일반화하는 등 일련의 과정들을 요구한다. 이런 상황아래 본 연구에서는 6차 초등학교 수학 교과서에서 여러 통계학 영역 중 그래프 형태로 가장 먼저 도입되는 막대그래프에 중점을 두어 현행 교과서에서 학습 내용과 학습 과정의 문제점에는 어떤 것이 있으며 아울러 그래프 이해력에 필요한 요소나 인지적 사고 능력, 그래프 이해력의 수준을 알아보고, 이를 바탕으로 여러 문헌을 통해 본 연구자가 나름대로 구안한 통계적 기법을 사용한 교수 ${\cdot}$ 학습 과정을 실험반에 적용한 후 그래프 이해력 사전 ${\cdot}$ 사후 검사를 비교함으로써 통계적 기법을 사용한 교수 ${\cdot}$ 학습 과정이 그래프 이해력에 어떠한 영향을 미치는지 알아보고자 한다.

  • PDF

탐구형 소프트웨어를 이용한 학습 환경에서 학생들의 기하 개념의 이해

  • Jeong, In-Cheol;Park, Dal-Won;Jang, Lee-Chae;Kim, Tae-Gyun
    • Communications of Mathematical Education
    • /
    • v.16
    • /
    • pp.93-108
    • /
    • 2003
  • 본 논문은 테크날러지가 주 도구인 기하수업시간에 학생들이 수학적 개념을 이해하는데 테크날러지가 어떠한 역할을 하는지 조사하였다. 본 연구를 위한 수업은 이미 진행되오던 형태의 수업이 아니라 교사도 학생들에게도 모두 새로운 형태의 수업이었고 GSP와 웹사이트를 이용하여 수업이 진행되었다. 자료 수집은 개인 면담, 교실 관찰, 과제 분석 및 일지작성을 통해서 이루어졌고 분석 지속적 비교분석법을 이용하였다. 학생들은 GSP를 이용하여 개념을 이해하려고 하기보다는 자신이 이해한 개념을 확인하는데 GSP를 이용하였고 일단 이렇게 이해되고 확인된 것에 대해 확장하는데 GSP에 많이 의존하였다. 특히, 학생들의 정의적 및 기능적 측면을 고려해야 할 필요성을 일깨워 주었다.

  • PDF

Mathematics Teachers' Conceptions of Proof and Proof-Instruction (수학 교사의 증명과 증명 지도에 대한 인식 - 대학원에 재학 중인 교사를 중심으로 -)

  • Na, Gwisoo
    • Communications of Mathematical Education
    • /
    • v.28 no.4
    • /
    • pp.513-528
    • /
    • 2014
  • This study is intended to examine 36 in-service secondary school mathematics teachers' conceptions of proof in the context of mathematics and mathematics education. The results suggest that almost teachers recognize the role as justification well but have the insufficient conceptions about another various roles of proof in mathematics. The results further suggest that many of teachers have vague concept-images in relation with the requirement of proof and recognize the insufficiency about the actual teaching of proof. Based on the results, implications for revision of mathematics curriculum and mathematics teacher education are discussed.

현대논리학적 단초들을 중심으로 한 라이프니츠 논리학의 이해

  • Ha, Byeong-Hak
    • Korean Journal of Logic
    • /
    • v.2
    • /
    • pp.91-118
    • /
    • 1998
  • 라이프니츠는 일반적으로 현대논리학의 선각자라고 부른다. 그래서 라이프니츠 논리학에서는 현대 논리학을 이해함에 있어서 중요한 단초들을 발견할 수 있다. 라이프니츠의 논리학을 대표하는 개념으로는 흔히 보편수학, 보편기호학 그리고 논리연산학을 들곤한다. 라이프니츠의 보편수학의 이념은 연대 논리학이 논리학과 수학의 통일에서 출발할 수 있는 결정적인 근거를 제공했다. 이러한 현대 논리학의 출발에 있어서는 상이한 두 입장을 발견할 수 있는데, 부울, 슈레더의 논리대수학과 프레게의 논리학주의가 바로 그것이다. 이 두 입장은 "논리학과 수학의 통일"에 있어서는 공통적인 관심을 보이지만, 논리학의 본질을 라이프니츠의 보편기호학에서 찾느냐 또는 라이프니츠의 논리연산학에서 찾느냐에 따라 상이한 입장을 취한다. 이외에도 보편과학이나 조합술을 이해하지 않고는 라이프니츠 논리학에 대한 총체적인 시각을 갖기 힘들다. 이 두 개념은 특히 타과학이나 과학적 방법론과 관련지어 논리학이란 과연 무엇인가라는 논리철학적인 조명에 있어서 중요한 실마리를 제공한다.

  • PDF

A Study on Meaning in Solving of Mathematical Modeling Problem (수학적 모델링문제 해결에서의 의미에 관한 연구)

  • Kim, Chang Su
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.3
    • /
    • pp.561-582
    • /
    • 2013
  • Meanwhile, the meaning has been emphasized in mathematics. But the meaning of meaning had not been clearly defined and the meaning classification had not been reported. In this respect, the meaning was classified as expressive and cognitive. Furthermore, it was reclassified as mathematical situation and real situation. Based on this classification, we investigated how student recognizes the meaning when solving mathematical modeling problem. As a result, we found that the understanding of cognitive meaning in real situation is more difficult than that of the other meaning. And we knew that understanding the meaning in solving of equation, has more difficulty than in expression of equation. Thus, to help students understanding the meaning in the whole process of mathematical modeling, we have to connect real situation with mathematical situation. And this teaching method through unit and measurement, will be an alternative method for connecting real situation and mathematical situation.

  • PDF

Korean and Hong Kong Student Teachers' Content Knowledge for Teaching Mathematics (한국과 홍콩 예비교사의 학교수학에 대한 이해 분석 연구)

  • Park, Kyung-Mee
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.3
    • /
    • pp.409-423
    • /
    • 2009
  • The purpose of this study is to probe into student teachers' understanding of mathematics content knowledge and to identify the features of knowledge which is required to be emphasized in the elementary teacher education. For this, student teachers attending teacher preparation courses in Korea and Hong Kong were interviewed on tasks encompassing the 'what', 'why' and 'how' aspects of elementary mathematics. It was found that for the student teachers in the sample, their understanding of the concepts behind elementary mathematical topics was not very thorough. They were unable to retrieve the advanced mathematics that they learned in their advanced mathematics courses. It is suggested that for student teachers in mathematics, it is essential that the advanced mathematics they learn be explicitly related to the elementary mathematics they have learned in school.

  • PDF

A study on mathematics class in North Korea (북한 수학 수업에 관한 연구)

  • Byun, Heehyun
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.297-311
    • /
    • 2013
  • The mainstream approaches to understand the characteristics of North Korean mathematics education focus on the comparative studies between South and North Korean mathematics curriculum and textbooks through literature analysis. These approaches make it possible to understand what is taught in mathematics class of North Korean school. But it is hard to find any information on how teachers teach mathematics and how students learn it. This study searches North Korean class environment, preparation for class, teaching and learning methods to understand mathematics class in North Korea as they really are. It is extremely difficult to make first-hand observations on North Korean class. Instead, this paper adopted interviews with teachers who have experience of teaching in North Korean school and now live in South Korea. By doing this, it is possible to get some understanding, although somewhat limited, the real aspects of North Korean mathematics class. As a result, there are distinct differences in the characteristics of North Korean mathematics class environment, preparation for class, teaching and learning methods, compared with South Korean.

  • PDF