• Title/Summary/Keyword: 수학을 대하는 경험

Search Result 53, Processing Time 0.021 seconds

Development of Adaptive Numerical Control System(I)Intelligent Selection of Machining Parameters by Neural-Network Methodology (적응제어 수치제어 시스템의 개발 (I) 신경회로망 기법에 의한 절삭계수의 지적인 선정)

  • 정성종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1223-1233
    • /
    • 1992
  • Chemical and mechanical properties of workpieces and tools are important factors for selecting machining parameters in machining process planning. As there is no universal rule representing the machinability defined by metal removal rate, the selection of machining parameters still requires experience-oriented methods. In this paper, a new approach is presented to develop mathematical models for generating optimum machinability in turning processes based on chemical and mechanical properties of workpieces. Neural-Network methodology is introduced to identify mathematical models for machinability. It is confirmed by simulations that the proposed methodology can be used for developing numerical controllers with adaptive control performance.

A Validation Check of Simulation Model with the Model Transformation (모델변환에 의한 시뮬레이션 모델의 타당성 검사)

  • 정영식
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.9-9
    • /
    • 1992
  • 시뮬레이션(simulation)은 실 시스템(real system)의 효과적이고 효율적인 운영을 도모하기 위하여 실 시스템의 동작을 이해하고 분석, 예측, 평가하는 과학적인 문제해결 접근방법이다. 시뮬레이션 수행단계는 실 시스템의 행위를 정확히 반영하도록 타당한 모델을 구축하는 모델링 단계와 모델에 의도하는 명령어들을 컴퓨터 프로그램으로 작성하는 구현단계로 나누어진다. 시뮬레이션 모델은 시간, 상태, 확률변수, 상호규칙 등의 여러 관점에 따라 다양하게 존재하는데, DEVS(Descrete EVent system Specification) 모델은 연속적인 시간상에서 이산적으로 발생하는 사건에 따라 시스템의 상태를 분석할 수 있고 모델링 및 시뮬레이션 방법론의 형식화를 위한 견고한 이론적 기반을 제공하고 있다. 또한, DEVS 모델은 모듈적, 계층적 특성을 제공하고 집합론에 근거한 수학적 형식구조를 제공하여 실 시스템에 대한 체계적인 분석과정을 수행하게 되어 보다 현실적인 모델링을 가능하게 한다. 그러나 타당하지 못한 DEVS 모델이 구축되면 시뮬레이션을 통한 분석결과의 신뢰성이 떨어져 아무런 효과가 없고 경제적인 손실만이 따른다. DEVS 모델에 대한 기존의 타당성 검사가 많은 시간과 노력이 요구되고, 반복적인 DEVS 모델링 과정으로 인한 전문적이고 경험적인 지식을 요구한다. 또한, 모델설계자에 의해 설정된 실험 프레임하에서 DEVS 모델의 구성요소에 속하는 상태전이함수, 시간진행함수 및 출력함수에 대하여 commutative 성질의 보전성 검사가 어렵다는 문제점을 가지고 있다. 본 연구에서는 이와 같은 문제점을 해결하기 위하여, DEVS 모델에 대한 타당성 검사를 SPN(Stochastic Petri Net) 모델로 변환하여 SPN 모델을 이용하는 간단하고 효과적인 타당성 검사 방법을 제안한다. 먼저, DEVs 모델에 대한 개념과 기존의 DEVS 모델에 대한 타당성 검사 방법을 고찰하고 그 문제점에 대하여 자세히 설명한다. DEVS 모델의 타당성 검사에 이용하는 SPN 모델에 대한 개념과 DEVS 모델과 행위적으로 동등한 SNP 모델로 변환을 위한 관점을 제조명하다. 동일한 관점에서 두 모델의 상태표현이 같도록 DEVS 모델이 SPN 모델로 표현됨을 보이는 변환이론을 제시하고 변환이론을 바탕으로 모델 변환과정을 제시한다. 모델 변환이론과 변환고정을 기본으로 타당성 검사를 위한 새로운 동질함수(homogeneous function)를 정의하고 이와 함께 SPN 모델의 특성을 이용하여 DEVS 모델에 대한 타당성 검사 방법을 새롭게 제안한다.

  • PDF

A study for Build the Concept Image about Natural Logarithm under GeoGebra Environment (GeoGebra 환경에서 정적분을 이용한 자연로그의 개념이미지 형성 학습 개선방안)

  • Lee, Jeong-Gon
    • Journal for History of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.71-88
    • /
    • 2012
  • The purpose of this study is to find the way to build the concept image about natural logarithm and the method is using definite integral in calculus under GeoGebra environment. When the students approach to natural logarithm, need to use dynamic program about the definite integral in calculus. Visible reasoning process through using dynamic program(GeoGebra) is the most important part that make the concept image to students. Also, for understand mathematical concept to students, using GeoGebra environment in dynamic program is not only useful but helpful method of teaching and studying. In this article, about graph of natural logarithm using the definite integral, to explore process of understand and to find special feature under GeoGebra environment. And it was obtained from a survey of undergraduate students of mathmatics. Also, relate to this process, examine an aspect of students, how understand about connection between natural logarithm and the definite integral, definition of natural logarithm and mathematical link of e. As a result, we found that undergraduate students of mathmatics can understand clearly more about the graph of natural logarithm using the definite integral when using GeoGebra environment. Futhermore, in process of handling the dynamic program that provide opportunity that to observe and analysis about process for problem solving and real concept of mathematics.

A Study of Using Concrete Materials and Mathematical Communications in the Primary Mathematics Class - Focused on 2nd Grades in Primary school - (초등학교 수학 수업에서의 구체물 활용과 수학적 의사소통에 관한 연구 - 2학년 아동을 중심으로 -)

  • Lee Me Ae;Kim Soo Hwan
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.5 no.1
    • /
    • pp.99-120
    • /
    • 2001
  • The purpose of this thesis is to find the guiding direction of mathematical communication in lower grade students of elementary school and to present a new direction about the effect of using concrete material in communication. It is expected that mathematical communication increases when concrete material is used for the students of the lower grades, who are in concrete operational period. Therefore, this study ai s to investigate what characteristics there are in mathematical communication of second grade students and what effect concrete materials have on mathematical communication and learning. The analysis of the teaching record shows that the second grade students use alternative terms in the process of communication since they are not familiar with mathematical symbols or terms, which is a characteristic of communication in a mathematics class in which concrete material is used. In the process of teaming the students apply their living experiences to their teaming. Since a small number of students lead class, the interaction between students is also led by them. The direction of communication in a small group is not centered around solution of a problem, and most students show a more interest in finding answers than in the process of learning. The effect that concrete material has on communication plays an important role in promoting students' speaking activity; it allows students to identify and correct their errors more easily. It also makes students' activities more predictable, and it increases a small group activities through the medium of concrete material. However, it was also noticed that students' listening activities are not appropriately developed since they do not pay attention to a teacher who uses concrete material. The effects that concrete material has on mathematics class can be summarized as follows. Concrete material promotes students' participation in class by triggering their interest of learning of mathematics and helps them to understand the course of learning. It also helps the teaming and formation of concepts for children of low academic performance. And it makes a phased learning possible according to students' ability to use concrete material and to solve a problem. Based upon the results above mentioned, the use of concrete material is absolutely needed in mathematics classes of lower grade elementary school students since it increases communication and gives much influence on mathematics learning. Therefore, teachers need to develop teaching or learning method which can help increase communication, considering the characteristics of students' communication.

  • PDF

An Analysis on the Elementary Students' Problem Solving about Equal Sharing Problem and Fraction Order (균등 분배 문제와 분수의 크기 비교에 대한 초등학생들의 문제해결 분석)

  • Lee, Daehyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.21 no.4
    • /
    • pp.303-326
    • /
    • 2018
  • Fraction has difficulties in learning because of the diversity of meanings, the ways of presenting contents and teaching methods in elementary school mathematics. Therefore, the various strategies of teaching of fraction concept is proposed as an alternative. The problem of equal sharing problem is that children can experience the concept of fractions naturally in the context of everyday distribution. Even before learning formal fractions, children can solve them in various ways based on their own experiences. The purpose of this study is to investigate the degree of problem solving and problem solving strategies for children in 2nd, 4th, and 6th grades in elementary school. As a result of the research, the percentage of correct answers increased as the grade increased, but the grade levels showed a difference depending on the numbers given to the problems. Also, there were differences in the problem solving strategies according to the grade levels. Also, according to the numbers presented in the problem, the percentage of correct answers was high in items that were easy to divide, and the percentage of correct answers was low in items that were difficult to divide. When children solved the problems, they were affected by the strategies they could use immediately according to the number presented in the problem, and their learning experiences were also affected.

정성적 시뮬레이션에 의한 화력발전소 보일러 프로세스의 고장진단

  • 김응석;오영일;변승현
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.169-169
    • /
    • 1999
  • 최근 산업 플랜트의 공정제어 시스템은 복잡하고 대규모화되어 고장 발생시 경제적 손실과 위험성이 증폭되어 규정된 안정서와 신뢰성 확보가 필수적이라 할 수 있다. 고장검출 및 진단기법은 시스템의 신뢰성을 높이기 위한 효과적인 방안을 연구하는 것으로 현대에 들어서 많은 학자들의 관심을 끌고 있으며 실제 계통에 점차적으로 응용되고 있다. 현재까지 개발된 고장검출 및 진단기법은 사용된 프로세스 모델의 형태, 고장검출 진단 알고리즘에 따라 다양하게 분류 될 수 있으며 일반적으로 사용된 모델에 따라 크게 1) 정량적 모델에 근거한 해석적 기법, 2) 정성적 모델에 근거한 기법, 3) 지식기반 진단 기법으로 구분 할 수 있다. 이중 정량적 모델 기법은 대상계통의 수학적 모델에 근거하여 운전 데이터를 분석함으로서 고장검출 진단을 수행하는 해석적 기법으로서 근본적으로 계통의 정확한 수학적 모델을 요구하므로 불확실성을 포함한 계통 및 비선형성이 강한 계통등에는 적용이 곤란하다. 정성적 모델 및 지식기반 기법은 정량적 진단 기법과는 달리 대상 프로세스에 대한 수학적 모델 대신에 운전자의 경험과 프로세스 변수간의 상호 작용 및 고장의 전파과정, 고장원인과 증상과의 직접적인 관계에 대한 구조적 지식에 근거한 것으로 고장원인에 대한 계통의 동작을 추론 할 수 있으며, 상황 변화에 따른 영향을 예측할 수 있다. 본 논문에서는 정성적 모델 및 지식기반 기법에 근거한 고장검출 및 진단 기술을 화력 발전소 보일로 프로세스에 적용하여 정성적 시뮬레이션에 의한 설비의 고장을 조기에 발견하여 고장 파급으로 인한 발전 정지 및 설비의 손상 확대를 방지하고 고장 발생시 신속한 원인 규명 및 후속 조치관련 정보들을 운전원에게 제공할 목적으로 현재 전력원에서 개발중인 지능형 경보시스템에 대하여 기술하고자 한다.음과 같이 설명하였다. 서로 상반되는 것들이 다음과 같이 설명하였다. 서로 상반되는 것들이 부딛힘이 없이 공존하고 일상의 논리가 무시된다. 부정, 의심이 없고 확실한 것이 없다. 한 대상에 가졌던 생각이 다른 대상에 옮겨간다(displacement). 한 대상이 여러 대상이 갖고 있는 의미를 함축하고 있다(condensation). 시각적인 순서가 무시된다. 마음속의 생각과 외부의 실제적인 일을 구분하지 못한다. 시간 상의 순서가 있다가 없다가 한다. 차례로 일어나야 할 일이 동시에 한꺼번에 일어난다. 대상들이 서로 비슷해지고 동시에 있을 수 없는 대상들이 함께 나타난다. 사고의 정상적인 구조가 와해된다. Matte-Blance는 무의식에서는 여러 독립된 대상들간의 구분을 없애며, 주체와 객체를 하나로 보려는 대칭화(symmetrization)의 경향이 있기 때문에 이런 변화가 생긴다고 하였다. 또 대칭화가 진행되면 무한대의 느낌을 갖게 되어, 전지(moniscience), 전능(omnipotence), 무력감(impotence), 이상화(idealization)가 나타난다. 그러나 무의식에 대칭화만 있는 것은 아니며, 의식의 사고양식인 비대칭도 어느 정도 나타나며, 대칭화의 정도에 따라, 대상들이 잘 구분되어 있는 단계, 의식수준의 감정단계, 집단 내에서의 대칭화 단계, 집단간에서의 대칭화 단계, 구분이 없어지는 단계로 구분하였다.systems. We believe that this taxonomy is a significant contribution because it adds clarity, completeness, and "global perspective" to workflow architectural discussions. The vocabulary suggested here

  • PDF

Design of VMS Fuzzy Feedback Controller for VMS Routing Information (대안경로 안내용 VMS 퍼지 피드백 제어기법)

  • Park, Eun-Mi;O, Hyeon-Seon;Yang, Tae-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.129-136
    • /
    • 2011
  • Variable Message Signs have been used for providing information on the current traffic conditions. However, it is considered more important to achieve optimal traffic allocation among the alternative routes by strategic VMS information provision. Fuzzy control is very effective and efficient to deal with such systems that are too complex and uncertain to build mathematical models. In this paper, a fuzzy feedback controller for VMS is proposed, whose goal is to achieve the travel time equilibrium between the two alternative routes. The performance of the suggested controller is implemented and examined using MATLAB/Simulink. More robust controller applicable to a real highway network is suggested for the further research.

The Effects of Estimation Activities on Understanding Concepts, Predicting and Calculating Answers in Problem Solving Procedure: Cases of Speed and Density (어림 활동이 문제 해결 과정에서 개념 이해, 해답 예측, 계산에 미치는 영향 : 속력과 밀도의 사례를 중심으로)

  • Suh, Jung-Ah;Jo, Kwang-Hee;Song, Jin-Woong;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.5
    • /
    • pp.814-824
    • /
    • 2004
  • This article presents the effects of estimation activities related to speed and density on students' concept-understanding, answer-prediction, and answer-calculation in problem solving procedure with quantitative and qualitative methods. Participants were one hundred and ninety two seventh graders from one coeducational school in Seoul. Half of them participated in the estimation activities and the other half did in the measurement activities. Discussions of three students during estimation activities on density and their post-interviews were tape-recorded. Pre- and post-assessment scores were analyzed for the whole classes, and students' discussions and interviews served this research as evidences for the case analysis. Results of scores indicated that students in the estimation activities were significantly better than those in the measurement activities for predicting answers, but not for understanding concepts. Analysis of the cases revealed that estimation activity helped them to understand the relations of mass, volume and density, empirically, which enhanced their prediction ability. Furthermore, the ability could help a student with low calculation ability to comprehend the calculation problems. Thus, it is concluded that estimation activities could influence students' empirical learning on quantitative concepts, which enhanced their prediction ability.

Reliability Analysis on Stability of Armor Units for Foundation Mound of Composite Breakwaters (혼성제 기초 마운드의 피복재 안정성에 대한 신뢰성 해석)

  • Cheol-Eung Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.23-32
    • /
    • 2023
  • Probabilistic and deterministic analyses are implemented for the armor units of rubble foundation mound of composite breakwaters which is needed to protect the upright section against the scour of foundation mounds. By a little modification and incorporation of the previous empirical formulas that has commonly been applied to design the armor units of foundation mound, a new type formula of stability number has been suggested which is capable of taking into account slopes of foundation mounds, damage ratios of armor units, and incident wave numbers. The new proposed formula becomes mathematically identical with the previous empirical formula under the same conditions used in the developing process. Deterministic design have first been carried out to evaluate the minimum weights of armor units for several conditions associated with a typical section of composite breakwater. When the slopes of foundation mound become steepening and the incident wave numbers are increasing, the bigger armor units more than those from the previous empirical formula should be required. The opposite trends however are shown if the damage ratios is much more allowed. Meanwhile, the reliability analysis, which is one of probabilistic models, has been performed in order to quantitatively verify how the armor unit resulted from the deterministic design is stable. It has been confirmed that 1.2% of annual encounter probability of failure has been evaluated under the condition of 1% damage ratio of armor units for the design wave of 50 years return period. By additionally calculating the influence factors of the related random variables on the failure probability due to those uncertainties, it has been found that Hudson's stability coefficient, significant wave height, and water depth above foundation mound have sequentially been given the impacts on failure regardless of the incident wave angles. Finally, sensitivity analysis has been interpreted with respect to the variations of random variables which are implicitly involved in the formula of stability number for armor units of foundation mound. Then, the probability of failure have been rapidly decreased as the water depth above foundation mound are deepening. However, it has been shown that the probability of failure have been increased according as the berm width of foundation mound are widening and wave periods become shortening.

Secondary Teachers' Perceptions and Needs Analysis on Integrative STEM Education (통합 STEM 교육에 대한 중등 교사의 인식과 요구)

  • Lee, Hyo-Nyong;Son, Dong-Il;Kwon, Hyuk-Soo;Park, Kyung-Suk;Han, In-Ki;Jung, Hyun-Il;Lee, Seong-Soo;Oh, Hee-Jin;Nam, Jung-Chul;Oh, Young-Jai;Phang, Seong-Hye;Seo, Bo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.1
    • /
    • pp.30-45
    • /
    • 2012
  • Educational communities around the world have concentrated on integrative efforts among science, technology, engineering and mathematics (Science, Technology, Engineering, and Mathematics: STEM) subjects. Korea has focused on integrative education among STEAM (Science, Technology, Engineering, Arts, and Mathematics) school subjects to raise talented human resources in the fields of science and technology. The purpose of this study was to analyze secondary school science, technology, and mathematics teacher's perceptions and needs toward integrated education and integrative STEM education. A total of 251 secondary school teachers from all areas of the country who have taught science, mathematics, and technology were surveyed by using a self-reported instrument. The findings were as follows: First, teachers have used little integrated education in their classes due to insufficient time in the actual preparation of the integrated education and the lack of expertise, teaching experience, and teaching-learning materials for the integrated education, while they have positive thoughts about the need of integrated education. Second, they presented several needs to facilitate the integrated education: development of a variety of integrated programs, school administrative and financial support, and in-service teachers' training. Third, overall perception toward integrated STEM education was not sufficient, but most teachers perceived the need toward integrated STEM education due to students' development in their creativity, thinking skills, and adaptability. Fourth, they perceived that it was imperative to develop the various integrated STEM education programs, distribute the materials, and help STEM teachers' understanding toward integrated STEM education. Fifth, they perceived that the most relevant method to integrate STEM subjects was the problem solving approach. In addition, they appreciate that the integrated STEM education is highly efficient in not only developing integrated problem solving skills and STEM related literacy, but also in positively impacting the rise of talented human resources in the fields of science and technology. In order to increase the awareness of STEM-related secondary school teachers and vitalize the integrated STEM education, it is necessary to develop and spread a variety of programs, effective teaching and learning materials, and teachers' training programs.