• Title/Summary/Keyword: 수축 량

Search Result 693, Processing Time 0.029 seconds

Investigation of Shrinkage around Small Box of Short Span Slab (단경간 슬래브 중앙 소형박스(개구부)주변의 건조수축 거동 조사 연구)

  • Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.323-328
    • /
    • 2016
  • There are small box opening for inserting of electric lamp box in the slab of apartment. Around this box opening, we normally use the detailing of WWF or plastic ring strengthening to protect cracks induced by shrinkage. The shrinkage amount of slab box around was measured and analysed in order to consider validity of these strengthening methods and to find out economical alternative. Alternative of strengthening methods are normally used strengthening methods in construction companies, which are WWF strengthening, plastic ring strengthening and no strengthening methods. The shrinkage amount was measured using contact guage at the spot of tip attached around the box on slab of small area unit apartment which have small exclusive area below $59m^2$. Measured data shows that there are no big differences between all the 3 strengthening methods and Measure data range is $-264{\mu}{\varepsilon}{\sim}+216{\mu}{\varepsilon}$. Measured shrinkage is on trend slightly increase till 3~5weeks after removal of forms and then decrease. But amount of shrinkage are very low for all the slabs and there are no probabilities of concrete crack by shrinkage.

Development of Shrinkage Reducing Agent for 3D Printing Concrete (3D 프린팅 콘크리트용 수축저감제 개발)

  • Lee, Dong-gyu;Yoo, Byung-Hyun;Son, Ho-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.37-43
    • /
    • 2019
  • Since 3D printed concrete can be constructed without formwork, it is easy to construct an atypical structure, and the construction time and labor cost can be reduced. However, since the construction is exposed to the outside, shrinkage cracking due to moisture loss inside and outside the concrete occurs. Therefore, in order to improve the durability of the 3D printed concrete, a shrinkage reduction plan of the 3D printed concrete is required. In this study, glycol-based and alcohol-based shrinkage reducing agents were fabricated and evaluated for their performance. The shrinkage reducing agent samples showing excellent performance were selected and applied to 3D printed concrete. As a result, the compressive strength was increased by more than 10% and the shrinkage was reduced by more than 36% when using a shrinkage reducing agent. It is expected that the production of high quality 3D printed concrete will be possible because it is possible to increase the compressive strength and reduce the amount of dry shrinkage by applying a shrinkage reducing agent for 3D printed concrete.

Effect of Emulsified Waste Oil on the Engineering Properties and Autogenous Shrinkage of the High Strength Concrete (유화처리된 폐식용유가 고강도 콘크리트의 공학적 특성 및 자기수축에 미치는 영향)

  • Han, Min-Cheol;Kim, Tae-Cheong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.62-69
    • /
    • 2012
  • This study investigates the engineering properties of the high strength concrete depending on dosages and types of shrinkage reduction agent. Test results showed that for the properties of fresh concrete, the addition of the conventional shrinkage reduction agent (SR) of 0.25% decreased slump flow up to 40% as compared with control concrete, whereas the addition of the emulsified waste cooking oil (EWCO) decreased slump flow of only 5% to 10%. Other properties of fresh concrete with the agents, namely air content, unit weight and setting time, were similar to the results of the control concrete. For the properties of hardened concrete, the compressive strength of the concrete with SR decreased at both early and later stage. However, the compressive strength of the concrete with EWCO was similar to the control concrete at early age, but decreased at later stage (up to 10% reduction at 28 days). For the effect of the agents on autogenous shrinkage of the concretes, the addition of EWCO decreased up to 33%, whereas that of SR decreased up to 29%. Hence, it can be said that the addition of EWCO in high strength concrete has an effect on reducing the autogenous shrinkage as compared with a conventional agent and only slight influence on the slump flow and air content of concrete. By taking all aspects of using EWCO, it is concluded that the optimum content of EWCO will be in the range of between 0.5% and 0.75%.

  • PDF

EFFECT OF FIBER DIRECTION ON THE POLYMERIZATION SHRINKAGE OF FIBER-REINFORCED COMPOSITES (섬유 보강 복합레진의 섬유 방향이 중합수축에 미치는 영향)

  • Yom, Joong-Won;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.364-370
    • /
    • 2009
  • The aim of this study was to evaluate the effect of fiber direction on the polymerization shrinkage of fiber-reinforced composite. The disc-shaped flowable composite specimens (d = 10 mm, h = 2 mm, Aeliteflo A2, Bisco, Inc., IL, USA) with or without glass fiber bundle (X-80821P Glass Fiber, Bisco, Inc., IL, USA) inside were prepared, and the longitudinal and transversal polymerization shrinkage of the specimens on radial plane were measured with strain gages (Linear S-series 350${\Omega}$, CAS, Seoul, Korea). In order to measure the free polymerization shrinkage of the flowable composite itself, the disc-shaped specimens (d = 7 mm, h = 1 mm) without fiber were prepared, and the axial shrinkage was measured with an LVDT (linear variable differential transformer) displacement sensor. The cross-section of the polymerized specimens was observed with a scanning electron microscope to examine the arrangement of the fiber bundle in composite. The mean polymerization shrinkage value of each specimen group was analyzed with ANOVA and Scheffe post-hoc test (${\alpha}$=0.05). The radial polymerization shrinkage of fiber-reinforced composite was decreased in the longitudinal direction of fiber, but increased in the transversal direction of fiber (p<0.05). We can conclude that the polymerization shrinkage of fiber-reinforced composite splint or restoratives is dependent on the direction of fiber.

Study on Properties of Dry Shrinkage according to Amount of Shrinkage Reduction Agent (수축저감제 혼입량에 따른 건조수축 특성 검토)

  • Seo, Tae Seok;Lee, Hyun Seung;Kim, Kang Min;Yoon, Seob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.209-210
    • /
    • 2021
  • This study aims to develop ultra-low-shrinkage high-quality concrete. Therefore, the concrete drying shrinkage characteristics according to the type and amount of the shrinkage reducing agent were reviewed. As a result, the performance of Hexylene Glycol(HG) and Polyol was superior to that of PolyEthylene Glycol(PEG), which is most widely used in Korea. In addition, the shrinkage reduction effect was improved as the amount of PEG was increased, but the disadvantage of the strength reduction when excessive use was confirmed.

  • PDF

Effect of Mineral Admixture Types on the Engineering Properties and the Drying Shrinkage of the Concrete (혼화재 종류가 콘크리트의 공학적 특성 및 건조수축에 미치는 영향)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.119-125
    • /
    • 2009
  • In this paper, the engineering properties and estimation of drying shrinkage of concrete incorporating fly ash (FA), blast furnace slag (BS) and cement kiln dust (CKD) were discussed. FA, BS and CKD contents ranged from 0% to 20%. Water to binder ratio (W/B) also ranged from 40 to 50 %, with a 5% interval. For estimating drying shrinkage, an exponential model proposed by the author was applied, According to results, the use of FA, BS and CKD resulted in a decrease of flowability and air contents. As expected, the use of admixtures also decreases the early age strength of concrete, while at later age, due to a pozzolanic reaction of FA and BS, the compressive strength was recovered to a value comparable with that of plain concrete. For drying shrinkage, the use of admixtures led to an increase in the drying shrinkage of concrete. The exponential model suggested by the author showed good agreement between the calculated and experimental values both at early age and at later age.

Curvature and Deflection of Reinforced Concrete Beams due to Shrinkgae (건조수축에 의한 철근콘크리트 보의 곡률 및 처짐)

  • 김진근;이상순;양주경;신병천
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.261-268
    • /
    • 1998
  • Deflections due to shrinkage are frequently ignored in design calculation. Especially for thin member, shrinkage often causes considerable deformations as wellas appreciable stress changes. Several methods for computing shringkage curvature have been proposed by many researchers. Some of the approximte methods widely used in the recent years are the equivalent tensile force method, Miller's method and Branson's method. These methods were, however, somewhat oversimplified and could be too conservative in the case of well cured concrete structure. In this paper, an approximate method for computing shrinkage curvature and deflection is proposed. Curvature due to shrinkage is derived from the requirements of strain compatibility and equilibrium of a section and the age-adjusted effective modulus method. The proposed method is verified by comparison with several experimental measurements. The correlations between calculated and measured curvatures is very good.

Autogenous Shrinkage of High Performance Concrete Containing Ply Ash (플라이애시를 함유한 고성능 콘크리트의 자기수축)

  • 이회근;임준영;이광명;김병기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.249-256
    • /
    • 2002
  • High performance concrete is prone to large autogenous shrinkage due to its low water to binder ratio (W/B). The autogenous shrinkage of concrete is caused by self-desiccation as a result of water consumption by the hydration of cement. In this study, the autogenous shrinkage of high performance concrete with and without fly ash was Investigated. The properties of fresh concrete, slump loss, air content, and flowability as well as the mechanical properties, compressive strength and modulus of elasticity, were also measured. Test results was shown that the autogenous shrinkage of concrete increased as the W/B decreased. For the same W/B, the autogenous shrinkage of high strength concrete with fly ash was considerably reduced although the development of its compressive strength was delayed at early ages. Furthermore, the autogenous shrinkage and compressive strength of high strength concrete were more rapidly developed than those of normal strength concrete. It was concluded that fly ash could improve the quality of high strength concrete with respect to the workability and autogenous shrinkage.

Polymerization Shrinkage Distribution of a Dental Composite during Dental Restoration Observed by Digital Image Correlation Method (디지털 이미지 상관법을 이용한 치과용 복합레진의 수복 시 중합수축분포 관찰)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.393-398
    • /
    • 2017
  • The shrinkage distribution of a dental composite (Clearfil AP-X, Kuraray, Japan) used for dental restoration was observed using a digital image correlation method. In order to analyze the shrinkage distribution formed during and after light irradiation, digital images were taken with different photographing conditions for each period. Optimal photographing conditions during LED irradiation were obtained through a preliminary experiment in which the exposure time was applied from 0.15 ms to 0.55 ms in 0.05 ms intervals. The DIC analysis results showed that the strain was non-uniform. For the initial 20 s of light irradiation the composite resin shrank to the level of 50~60% of the final curing shrinkage. Such large shrinkage amount of the composite resin lump affected the tensile stress concentration near the adhesive region between the composite resin and the substrate.

Plastic Shrinkage Cracking Reduction of Press Concrete Using Admixtures in Basement (주차장바닥에서 혼화재료들을 사용한 누름콘크리트의 소성수축 균열저감)

  • Kim, Young-Su;Lee, Dong-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.416-424
    • /
    • 2019
  • In Korea, press concrete in basements is mainly applied using plain concrete. This system has undesirable defects such as cracks caused by plastic shrinkage and irregular temperature distribution. To solve this problem, metal lath and fibers have been used in the past. However, they have not been effective in controlling cracks. This study analyzed the reduction of plastic shrinkage cracking for press concrete using various admixtures in a basement has been. In the air contents test, the specimens with various admixtures showed air contents similar to plain concrete (4.5±1.5%). The specimens using silica fume, super plasticizer agent, and SBR showed higher compressive strength by about 10-15% than plain concrete. Cracking decreased when the MC, super plasticizer, and SBR were added. When MC was used in the concrete, the plastic shrinkage did not occur.