• Title/Summary/Keyword: 수소연료생산

Search Result 267, Processing Time 0.023 seconds

Development of Hydrogen Production Technology from Coal Gasification (석탄가스화 수소생산 기술개발)

  • Kim, Jae-Sung;Lee, Jong-Min;Kim, Dong-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.462-465
    • /
    • 2007
  • 석탄가스화 수소생산 기술 분야는 석탄 등의 화석연료를 이용하여 고온, 고압하에서 반응가스(산소, 수증기, 수소)와의 화학적 반응을 통해 생산된 연소성 가스 ($H_2$, CO, $CO_2$ 등)를 전환반응(WGS) 및 분리반응을 거쳐 효율적으로 청정하게 수소를 생산해 내는 기술이다. 전력산업에서 석탄가스화 수소생산은 그 사용 방법(연료전지, 수소 터빈, 분산 이용 등)에 따라 발전시스템의 고효율화를 지향하고, zero-emission을 실현하는 첨단 발전 시스템의 종합 구현을 목표로 하고 있으며, 더불어, 도래하는 수소 경제로의 전이에 대비에 석탄을 이용한 중앙(Central) 수소생산 시스템을 구현하여 이송 및 전환을 통한 지역적 분산 이용을 가능케 하는 종합적인 인프라를 구축하는 기술이다. 본 기술에는 석탄가스화 기술, 수성가스 전환기술, 수소/$CO_2$ 분리기술, 이송용 연료 전환기술 등이 포함된다. 석탄가스화 수소생산 기술은 급등하는 오일 가격과 이의 수입사용 증가에 대응하기 위한 에너지 안보 대책 마련 및 효율 극대화의 필요성과 더불어, 전력산업에서 화력 발전시스템의 궁극적 실현 목표인 고효율, 초청정의 전력생산 시스템의 구현을 가능케 하여, 향후 화석 연료를 이용한 미래 발전 기술을 선도 할 것으로 기대된다. 더불어, 수소 경제로의 전환 시 수소 수요의 급팽창에 대비한 경제적인 대규모 수소생산 기술의 개발이 필요하며, 이에 기술 실현성이 가장 높은 석탄가스화 수소생산 기술의 개발 구현이 요구된다.

  • PDF

Environmental and economic life cycle analysis of hydrogen as Transportation fuels (자동차 연료로서 수소의 전과정 환경성/경제성 분석)

  • Lee, Ji-Yong;Cha, Kyung-Hoon;Yu, Moo-Sang;Lee, Soo-Yeon;Hur, Tak;Lim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.543-547
    • /
    • 2007
  • 화석연료의 점진적 고갈과 그 사용에 따른 지구온난화 그리고 에너지 안보를 해결하기 위하여 세계 각국에서는 대체에너지 개발에 노력을 기울이고 있다. 그 중 수소는 가장 주목받고 있는 대체에너지 원으로 현재 기술개발을 통하여 상업화 시기를 앞당기려고 하고 있다. 다시 말해서, 현재는 수소에너지 시대의 진입 시점이라고 할 수 있다. 이러한 수소는 다양한 소스에서 생산될 수 있으며, 수송연료로 연소 시, 유해 배출물이 거의 나오지 않는 장점이 있다. 그러나 수소는 그 생산 경로에 따라서, 다양한 환경성 및 경제성을 나타낼 수 있다. 본 연구에서는 국내 수소 생산 방식으로 개발/상업화 되어 있는 NGSR, Naphtha SR, WE에 대하여, LCA와 LCCA 방법을 통하여, 수소 경로 전반 즉, 원료채취에서부터 자동차로 주행하였을 때까지를 포함하여 각 대상 수소 경로의 환경성과 경제성을 평가하였다. LCA와 LCCA 결과를 살펴보면, Naphtha SR 및 NGSR 수소 경로에서는 지구온난화와 화석자원 소모 부문 모두 기존연료와 비교해보았을 때 개선효과가 뚜렷하게 나타났으나, WE 수소 경로에서는 오히려 환경부하가 증가되는 것으로 나타났다. 또한 비용적인 측면에서 살펴보면, 수소에 가솔린과 동일한 연료 세율을 부과하더라도 수소가 가솔린에 비하여 주행 시 연료 비용이 저감되어 연료로서 가격경쟁력을 확보하였으며, 연료세를 부과하지 않는 다면, Naphtha SR로 생산하여 유통한 수소가 수송연료로써 가장 비용 효율적인 것으로 나타났다.

  • PDF

Hydrogen Production from hydrocarbon by carbon black decomposition (탄화수소류로부터 카본블랙에 의한 수소생산)

  • Yoon, Suk-Hoon;Han, Gi-Bo;Lee, Jong-Dae;Park, No-Kuk;Ryu, Si-Ok;Lee, Tae-Jin;Yoon, Ki-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.638-641
    • /
    • 2005
  • 수소는 자원이 무한하고 청결한 에너지이다. 수소는 무공해 청정 대체연료로 사용될 수 있을 뿐만 아니라 풍부한 자원으로부터 얻을 수 있다. 수소에너지는 물을 분해하여 얻거나 화석연료를 수증기개질 또는 부분산화 시킴으로써 얻을 수가 있다. 수소에너지는 1차 에너지를 변환시켜 얻을 수 있는 2차 에너지로서 환경에 대한 부하가 거의 없어 향후 화석연료를 대체할 수 있는 가장 가능성이 높은 에너지이며, 연료전지의 상용화를 앞두고 있어 중요성이 더욱 증대되고 있다. 수소를 생산하는 방법 중 가장 이상적인 방법으로는 물분해함으로써 수소를 제조하는 방법이 있다. 그러나 물분해에 의한 수소생산은 제조비용이 비싸 경제성이 떨어진다는 점과 수소의 대량생산에 필요한 기술확보가 여의치 않아 어렵다. 그러므로 수소를 저 비용으로 대량 생산할 수 있는 수소 제조 기술의 확보가 선행되어야 할 것이다. 현재 상용화되어 있는 수소제조방법은 거의 석유나 천연가스의 수증기 개질에 의한 수소 제조 방법이다. 그러나 이러한 방법은 유해 환경 물질인 CO나 $CO_2$를 배출하는 단점을 지니고 있다. 이러한 단점을 보완키 위한 수소 제조공정의 대안 중 하나는 탄화수소연료의 수소와 탄소로의 직접분해에 의한 수소생산이다. 이 중 원하는 생성물인 수소 외에 부산물이 카본이 동시에 얻을 수 있는 메탄분해에 의한 수소생산방법은 생산된 수소의 약 15%만 연소시킴으로서 필요한 에너지를 공급할 수 있으며, 동시에 지구온난화의 주범인 CO 또는 $CO_2$가 생성되지 않는 장점이 있다. 하지만 메탄을 분해하기 위해서는 매우 높은 에너지가 필요로 하게 된다. 이에 반해 프로판은 메탄보다 낮은 열원에서 분해할 수 있는 장점을 지니고 있다. 본 연구에서는 메탄보다 분해하기 쉬운 프로판을 직접 분해하여 수소를 생산하고자 하였다. 프로판 직접분해반응는 $500\sim750^{\circ}C$의 온도 범위에서 이루어 졌으며, 촉매로서는 국내에서 생산되는 상용촉매인 카본블랙을 이용하였다.

  • PDF

Environmental and economic life cycle analysis of hydrogen as Transportation fuels (자동차 연료로서 수소의 전과정 환경성/경제성 분석)

  • Lee, Ji-Yong;Cha, Kyoung-Hoon;Yu, Moo-Sang;Lee, Soo-Yeon;Hur, Tak;Lim, Tae-Won
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.31-39
    • /
    • 2007
  • 화석연료의 사용으로 인한 자원고갈과 지구온난화 영향 그리고 에너지 안보문제의 해결을 위해 세계 각국들은 대체에너지 개발에 많은 노력을 기울이고 있다. 그 중 수소는 다양한 경로를 통해 생산 가능하고, 수송연료로 사용 시, 유해 물질이 거의 배출되지 않는다는 장점 때문에 가장 주목받는 대체 에너지원이다. 현재는 수소생산 기술개발을 통해 상업화시기를 앞당기려고 하는 수소에너지 시대의 진입시점이라 할 수 있다. 그러나 수소는 생산경로에 따라 다양한 환경성 및 경제성 결과를 도출 할 수 있기 때문에 다양한 평가가 요구된다. 본 연구에서는 국내 수소생산 방식으로 개발/상용화되어있는 Natural Gas Steam Reforming (NGSR), Naphtha Steam Reforming (Naphtha SR), Water Electrolysis (WE)에 대하여, Life Cycle Assessment (LCA)와 Life Cycle Costing Analysis (LCCA) 방법을 사용하여, 수소경로 전반에 대한 즉, 원료채취부터 자동차로 주행하였을 때까지의 각 대상 수소경로의 환경성과 경제성을 평가하였다. LCA와 LCCA 결과는 Naphtha SR과 NGSR 수소경로에서 지구온난화와 화석자원 소모 부문 모두 기존연료 (가솔린, 디젤)와 비교해서 개선효과가 뚜렷하게 나타났으나, WE 수소경로는 오히려 환경부하가 증가되는 것으로 나타났다. 또한 경제성 측면에서는, 수소 판매 시 가솔린과 동일한 연료세율을 부과하더라도 수소가 가솔린에 비해 가격경쟁력을 확보하게 되는데, 이는 주행 시 수소자동차의 연비가 기존 차량에 비해 월등히 좋기 때문에 연료비용의 이점 때문이다. 만약, 수소에 연료세를 부과하지 않는 다면, Naphtha SR로 생산하여 유통한 수소가 수송연료로서 가장 뛰어난 비용효율성을 갖는 것으로 나타났다.

  • PDF

Technical Trends of Hydrogen Production (수소생산 기술동향)

  • Ryi, Shin-Kun;Han, Jae-Yun;Kim, Chang-Hyun;Lim, Hankwon;Jung, Ho-Young
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.121-132
    • /
    • 2017
  • The increase of greenhouse gases and the concern of global warming instigate the development and spread of renewable energy and hydrogen is considered one of the clean energy sources. Hydrogen is one of the most elements in the earth and exist in the form of fossil fuel, biomass and water. In order to use hydrogen for a clean energy source, the hydrogen production method should be eco-friendly and economic as well. There are two different hydrogen production methods: conventional thermal method using fossil fuel and renewable method using biomass and water. Steam reforming, autothermal reforming, partial oxidation, and gasification (using solid fuel) have been considered for hydrogen production from fossil fuel. When using fossil fuel, carbon dioxide should be separated from hydrogen and captured to be accepted as a clean energy. The amount of hydrogen from biomass is insignificant. In order to occupy noticeable portion in hydrogen industries, biomass conversion, especially, biological method should be sufficiently improved in a process efficiency and a microorganism cultivation. Electrolysis is a mature technology and hydrogen from water is considered the most eco-friendly method in terms of clean energy when the electric power is from renewable sources such as photovoltaic cell, solar heat, and wind power etc.

A Perspective on Nuclear Production of Hydrogen (원자력을 이용한 수소 생산 전망)

  • 이한명;오근배
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.105-110
    • /
    • 2002
  • 수소는 환경친화적이며, 재생 가능한 에너지로서의 특징을 가지고 있으므로 미래 에너지원의 하나로 주목받고 있다. 현재 전 세계에서 생산되고 있는 수소의 대부분은 화석연료를 이용하여 제조되고 있으나 제조 과정에서 이산화탄소를 배출함으로써 지구온난화를 가속화시키는 단점을 지니고 있다. 이에 따라 세계 각국은 화석연료 자원에 의존하지 않고 수소를 생산하기 위한 방안들을 개발 중에 있다. 이러한 방안 중에서 원자력은 환경 친화적이며 지속 가능하게 수소를 생산할 수 있는 방안의 하나로 주목받고 있다.(중략)

  • PDF

수소$\cdot$연료전지 기술현황 및 전망

  • 홍성안
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.24-31
    • /
    • 2005
  • 수소에너지는 궁극적으로 인류가 당면하고 있는 에너지와 환경 문제를 동시에 해결할 수 있는 유일한 꿈의 에너지원으로 평가된다. 향후 $30\~40$년 뒤에 예상되는 수소에너지 시대, 즉 수소경제의 비전이 달성될 때 수소이용 기술인 연료전지 기술은 보편화돼 새로 건설되는 발전소는 연료전지 발전소가 대부분일 것이며, 가정과 상업용 건물에도 연료전지가 설치될 것이다. 또한 운행되는 상당 부분의 승용차와 버스가 연료전지 차량이며, 이에 상응해 주유소의 절반 정도는 연료전지 차량에 수소를 공급하는 수소 주유소로 대체될 것이다. 그러나 이러한 꿈을 이루기 위해서는 수소에너지 체계의 핵심인 연료전지 기술의 상용화는 물론 풍력, 태양 등을 이용한 대체에너지원으로부터의 수소생산기술, 수소저장, 운송에 이르는 수송 인프라스트럭처 구축 등 해결해야 할 과제가 적지 않다. 본 고에서는 수소이용기술의 대표적 기술인 연료전지 기술의 개발현황과 전망을 소개하고자 한다. 특히 연료전지 기술을 조기 상용화 하고자 하는 각 국의 노력을 소개하고, 응용분야별 해결되어야 할 기술적 문제 등을 소개한다.

  • PDF

Development of Natural Gas Steam Reformier for Small Scale On-Site Production of Hydrogen (소규모 현장 생산 방식에 의한 수소 제조용 천연가스 수증기 개질기 개발)

  • Seo Dong Joo;Seo Yutaek;Seo Yong Seog;Park Sang Ho;Jeong Jin Hyeok;Yoon Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.264-267
    • /
    • 2005
  • 수소의 소규모 분산 생산 기술은 본격적 인 수소 인프라가 도입되기 전에 연료전지 자동차의 수소 충 전용이나 분산 발전형 연료전지의 수소 공급을 위해 필요하다. 생산 용량은 수소 기준으로 $10\~100 Nm^3/hr$ 정도로 현재로선 천연가스의 수증기 개질법이 가장 경제적인 공정으로 알려져 있다. 소규모 생산에 따른 열효율 저하를 줄이 기 위해 단위 공정들이 통합된 컴팩트 개질 시스템의 개발이 필요하다. 핵심 기술인 컴팩트 리포머의 국산화 기술 확보를 위하여 $20 Nm^3/hr$용량의 동심관형 리포머를 설계, 제작하였다. 내부구조는 제작의 단순화를 고려하여 중첩된 동심관이 배열되었고 압력 손실과 열웅력 발생을 억제하도록 유로를 배치하였다. 수증기개질 반응에 필요한 반응열은 리포머 본체에 부착된 버너를 이용하여 공급하였다. 성능 측정을 위한 부속 기기로 상온 흡착식 탈황기, 폐열 회수형 수증기 발생기, 반응물 예열을 위한 열교환기, 생성 가스 응축기를 설계 제작하여 전체 리포밍 시스템을 구성하였다. 반응 온도 $680\~720^{\circ}C$, 탄소 대 수중기 비(S/C ratio) $2.7\~3.2$ 조건에서 수증기 개질 반응을 수행하였다. 해당 반응 조건에서 메탄 전환율 $89\%$ 이상, 저위 발열량 기준 개질 열효율 $70\%$ 이상을 달성하였고 개질 생성가스 내 수소의 최대 유량은 $23.4Nm^3/h$였다. 개발된 리포밍 시스템은 고순도 수소 생산이 필요한 경우, 수소 수율 향상을 위한 고온 수성 가스 전화 반응기를 통합 가능하도록 열교환기 구성을 조정할 수 있으며 용융 탄산염 연료전지와 같이 고온형 연료전지의 경우 $550^{\circ}C$ 이상으로 개질 생성 가스를 공급하도록 구성할 수도 있다. 향후 리포머 본체의 개질 효율 향상 및 장치 소형화, 부속 기기의 최적화를 통한 전체 리포밍 시스템 개선, 스케일 업 설계를 위한 엔지니어링 설계 패키지 구성을 계획하고 있다.

  • PDF

Policy of Fuel Cell Electric Vehicle and It's Implication (수소연료전지차 정책 및 시사점)

  • Chun, H.W.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.3
    • /
    • pp.151-159
    • /
    • 2013
  • 수소연료전지차(fuel cell electric vehicle)는 가솔린 내연기관 대신 수소와 공기 중의 산소 결합으로 전기를 자체 생산하는 연료전지를 동력원으로 하는 자동차이다. 엔진이 없기 때문에 배기가스 및 오염물질을 배출하지 않아 세계적으로 점점 강화되고 있는 환경규제에 대응하기 위한 친환경 자동차로 부각되고 있다. 미국, 유럽, 일본 등 주요 선진국들은 수소연료전지차 보급을 앞당기기 위해 기술 개발을 지원하고 있고 수소연료전지차 실증 사업 및 프로젝트를 추진하고 있으며, 수소충전소 인프라 확충 및 관련 제도의 정비에 박차를 가하고 있다.

  • PDF

In situ production of biohydrogen for fuel cell (연료전지로의 직접 공급을 위한 생물학적 수소생산)

  • Shin, Jong-Hwan;Yoon, Jong-Hyun;Park, Tai-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.470-473
    • /
    • 2006
  • 생물학적 수소생산을 위해 토양으로부터 새로운 균주인 Enterobacter asburiae SNU-1이 분리되었다 이 균주의 경우 다른 균주와는 달리 미생물 생장과 수소생산 phase가 분리되는 특징을 가지고 있다. 이러한 정지기에서의 수소생산은 미생물 내에 존재하는 formate hydrogen lyase를 사응하여 formate 분해에 의해 일어난다. 따라서 본 연구에서는 미생물 생장 phase에서 formate hydrogen lyase가 발현된 미생물을 얻고 이를 formate만 있는 배지에서 수소생산 가능성에 대한 연구를 수행하였다. 앞으로 formate분해를 위한 조건을 최적화한다면 높은 수소생산성을 나타낼 것이라 기대된다. 또한, 이는 formate로부터 미생물촉매를 이용하여 수소를 생산하고 이를 연료전지로 공급하는 생물학적 reformer로써의 이용 가능성을 보여준다.

  • PDF