• Title/Summary/Keyword: 수소에너지 정책

Search Result 74, Processing Time 0.021 seconds

Long-term and Short-term Scenarios Analysis for Hydrogen Techno-Economic Regime (수소 기술-경제체제로의 이행을 위한 장.단기 시나리오 분석)

  • Choi, Hyun-Do;Lee, Min-Kyu;Park, Sang-Ook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.296-305
    • /
    • 2005
  • 최근 수소에너지가 환경문제를 해결해 줄 수 있는 대체에너지로 각광받으면서 수소에너지의 사용이 가지고 올 새로운 에너지 체제에 대한 시나리오 연구가 다양하게 수행되고 있다. 수소 기술-경제체제의 가능한 시나리오를 제시하는 것은 미래 사회에서 수소가 에너지 운반체로서 담당하게 될 역할을 명확히 할 수 있음과 동시에 에너지라는 거대한 기술-경제체제의 변화를 위해 현재 수행해야 할 에너지 정책과 전략에 대해 큰 시사점을 줄 수 있기에 의미가 있다. 본 연구는 수소의 생산, 저장 및 운반, 그리고 응용분야에서의 다양한 기술의 SWOT 분석을 통해 가능한 시나리오를 단기와 장기로 나누어 제시했다. 그 결과 앞으로의 수소 기술-경제체제의 구조는 기술적 완성도 뿐 아니라 사회적 수용성, 사회적 적응성 등 외부의 환경변화에도 많은 영향을 받음을 알았다. 그렇기 때문에 수소에너지에 관한 전략과 정책은 이러한 변동을 충분히 고려하면서 결정돼야 한다.

Methods to Reduce Conflicts on Energy Transition to Hydro Energy: Focused on the Application of Design Thinking (수소에너지의 에너지전환 활용을 둘러싼 갈등해결 방안: 디자인씽킹 방법론 적용을 중심으로)

  • Kim, Taeyoon;Choi, Hanna;Kim, Minchul
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.30-39
    • /
    • 2020
  • The purpose of this paper is to present a solution to the conflict when hydrogen energy is used for national energy transition through design thinking methodology. Research shows that design thinking enables joint design of policies for hydrogen energy transition between government and stakeholders. This is a macro approach based on empathy and cooperation, and can form consensus on the policy design process in the early stages. Starting with an understanding of hydrogen energy conflicts, ideas can be found based on the experiences gained from conflicts of stakeholders, disputes or lawsuits. And based on this, additional ideas on hydrogen energy transition will be verified the realization of the ideas. Collaboration with stakeholders to improve conflicts can create new values. In the process of reconfiguring the definition of energy transition problems, the opinions of stakeholders can be integrated with continuous empathy. Through design thinking methodology, we can integrate opinions of stakeholders and prevent conflicts.

SWOT Analysis for Infrastructure of Hydrogen Energy Industry in Korea (국내 수소에너지 산업인프라 구축을 위한 SWOT 분석)

  • Kim, Chae-Bogk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.5
    • /
    • pp.337-345
    • /
    • 2016
  • There is an increasing attention on the sustainable energy in the world as the problem of fossil energy exhaustion and environmental issues appear. This paper addresses technologies and industries related to hydrogen energy in the literature, and develops strategy for the preparation of hydrogen energy infrastructure in Korea by extracting several factors suitable for SWOT analysis after reviewing literature. Research articles and reports about the practical application of hydrogen energy in the literature were investigated and seventy evaluation factors were extracted. Then, survey to eliminate the unsuitability problems of duplication, disproportion and objectivity was performed by scholars and experts in research institutes. Finally, sixteen factors consisting of 4 strength factors, 4 weakness factors, 5 opportunity factors and 4 threat factors were determined as the strategic factors for the infrastructure of hydrogen energy industry.

A Numerical Analysis on the Stress Behavior Characteristics of a Pressure Vessel for Hydrogen Filling by FEM (유한요소법을 이용한 수소충전용 압력용기의 응력 거동특성에 관한 수치적 연구)

  • Chol, Seunghyun;Byonl, Sung Kwang;Kim, Yun Tae;Choi, Ha Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.38-44
    • /
    • 2022
  • As the supply of hydrogen charging stations for hydrogen supply accelerates due to the hydrogen economy revitalization policy, the risk of accidents is also increasing. Since most hydrogen explosion accidents lead to major accidents, it is very important to secure safety when using hydrogen energy. In order to utilize hydrogen energy, it is essential to secure the safety of hydrogen storage containers used for production, storage, and transportation of liquid hydrogen. In this paper, in order to evaluate the structural safety of a hydrogen-filled pressure vessel, the behavioral characteristics of gas pressure were analyzed by finite element analysis. SA-372 Grade J / Class 70 was used for the material of the pressure vessel, and a hexahedral mesh was applied in the analysis model considering only the 1/4 shape because the pressure vessel is axisymmetric. A finite element analysis was performed at the maximum pressure using a hydrogen gas pressure vessel, and the von Mises stress, deformation, and strain energy density of the vessel were observed.

Analysis of Carbon Emission Effects and Hydrogen Prices for Overseas Green Hydrogen Imports by Development of Green Ship (친환경 선박 개발에 따른 해외 그린수소 수입에 대한 탄소 배출 영향 및 수소 단가 분석)

  • DO-HYUNG KIM;YEBIN CHOI;JI-HYUN OH;CHUL HO PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • Hydrogen is emerging as an essential material for carbon neutrality. In particular, Korea needs 22.9 million tons of imported clean hydrogen by 2050 to achieve carbon neutrality. However, a large amount of carbon is emitted during the import process, and market regulations are being discussed. This research estimates the carbon emissions of importing green hydrogen from Vietnam, Australia, and the United Arab Emirates to Korea, and calculates imported green hydrogen prices under carbon emission market regulations.

그린수소 생산을 위한 수전해기 소재부품 개발 동향과 뿌리기술 적용 방안

  • Kim, Yeong-Su
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.7 no.2
    • /
    • pp.22-28
    • /
    • 2021
  • 최근 잇따라 발생하고 있는 이상 기후로 탄소 중립에 대한 관심이 높아지고 있다. 우리나라 정부도 신재생에너지 중심의 에너지 전환과 수소 경제 활성화에 대한 정책을 연일 발표하면서 많은 국책 과제들이 추진되고 있다. 잉여 재생에너지를 수소 가스로 변환하여 저장했다가 필요할 때 다시 전기로 사용하거나, 수소 가스 자체를 타 산업에 활용할 수 있게 해주는 핵심 기술이 수전해 기술이다. 다양한 수전해 기술 중에 PEM 수전해 기술은 재생에너지의 빠른 변동에 신속하게 대응할 수 있어 재생에너지 확산과 더불어 최근 높은 관심을 받고 있는 기술이다. 그러나 비싼 촉매와 내부식성이 필요한 핵심 부품들이 국산화 되어 있지 않아 장치의 가격이 높은 상황이다. 그에 따라 아직은 수전해를 통해 생산된 수소 단가가 다른 기술을 통해 생산된 수소들 보다 가격이 높아 상업화가 더디게 진행되고 있다. 그러나 정밀 가공, 열처리, 코팅 등의 뿌리 기술들을 이용하면 PEM 수전해기의 핵심 부품인 bipolar plate나 end plate, 분리판 등을 국산화 하여 수소 생산 단가를 낮출 수 있는 여지는 충분하다. 탄소 중립에 반드시 필요한 그린 수소가 가격 경쟁력을 확보할 수 있도록 산업간 기술 협력이 절실한 시점이다.

Analysis of Domestic and Foreign Policy and Technology Trends for Hydrogen Industry Development (수소 산업 발전을 위한 국내외 정책 및 기술 동향 분석)

  • CHAEHYUN KIM;GUNWOO KIM;HANSANG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.122-131
    • /
    • 2023
  • Currently, major foreign countries such as Europe, the United States, Japan, and China have established policy and technology goals by 2050 to achieve the hydrogen economy. In line with this, Korea is also preparing to leap forward as a leading country in the world's best hydrogen economy by establishing a technology development target by 2050. In this paper, by examining and analyzing domestic and foreign policy and technology trends to date, implications for domestic hydrogen policy and technology trends are discussed, and major issues and future contents are summarized.

Hydrogen Policy Trends and Current Status of Hydrogen Technology Development by Value Chain (수소 정책 동향과 밸류체인별 수소 기술 개발 현황)

  • JAE EUN SHIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.562-574
    • /
    • 2023
  • Carbon neutrality has been suggested to overcome the global climate crisis caused by global climate change. Hydrogen energy is a major way to achieve carbon neutrality, and the developments and policies of hydrogen technology have been proposed to achieve this goal. To commercialize hydrogen energy resources, it is necessary to understand the overall value chain composed of hydrogen production, storage, and utilization and to present the direction of technological developments. In this paper the hydrogen strategies of major countries, including Europe, the United States, Japan, China, and South Korea will be analyzed, and hydrogen technologies by value chain will also be explain. This paper will contribute to understanding the overall hydrogen policy and technology, as both policy and technology are summarized.

Investigation of Background and Analysis of Policies and Projects for the Expansion of Hydrogen Industry Investments in Saudi Arabia (사우디아라비아의 수소 산업 투자 확대의 배경 조사와 수소 정책 및 프로젝트 분석)

  • HONYUN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.269-279
    • /
    • 2024
  • Saudi Arabia is transitioning from its traditional oil-dependent economy to become a leader in the hydrogen industry. This paper explores the kingdom's strategic investments in hydrogen production and infrastructure as key components of its energy diversification and sustainability efforts. The focus is on enhancing green hydrogen production to meet domestic needs and strengthen its position in the global market. The urgency of diversifying energy sources is emphasized, with projects like the NEOM Green Hydrogen Project illustrating Saudi Arabia's commitment to renewable energy integration. These initiatives are positioned to centralize Saudi Arabia in the global shift toward sustainable energy, signaling a significant pivot in its economic and environmental policies.

Analysis of the World Energy Status and Hydrogen Energy Technology R&D of Foreign Countries (국제에너지 현황 및 수소에너지 연구개발 동향)

  • Kang, Seok-Hun;Choi, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.216-223
    • /
    • 2007
  • The present carbon-based energy system will not last long due to its environmental and economical drawbacks. Hydrogen energy attracts more attention recently and seems to have large ripple effect on economy providing its technical, environmental and economical problems are solved. This paper analyses the situation changed from fossil to non-fossil energy system and the R&D policies of advanced countries by reviewing the world energy status and the energy policy of foreign countries. Finally, the R&D strategy of hydrogen energy technology was developed through analyzing the present states of energy research policy and programs of major countries.