DOI QR코드

DOI QR Code

A Numerical Analysis on the Stress Behavior Characteristics of a Pressure Vessel for Hydrogen Filling by FEM

유한요소법을 이용한 수소충전용 압력용기의 응력 거동특성에 관한 수치적 연구

  • Chol, Seunghyun (Department of Mechanical Engineering, Dongyang Mirae University) ;
  • Byonl, Sung Kwang (Department of Mechanical Engineering, Dongyang Mirae University) ;
  • Kim, Yun Tae (Department of Mechanical Engineering, Dongyang Mirae University) ;
  • Choi, Ha Young (Department of Mechanical Engineering, Dongyang Mirae University)
  • 조승현 (동양미래대학교 기계공학부) ;
  • 변성광 (동양미래대학교 기계공학부) ;
  • 김윤태 (동양미래대학교 기계공학부) ;
  • 최하영 (동양미래대학교 기계공학부)
  • Received : 2022.02.21
  • Accepted : 2022.05.24
  • Published : 2022.06.30

Abstract

As the supply of hydrogen charging stations for hydrogen supply accelerates due to the hydrogen economy revitalization policy, the risk of accidents is also increasing. Since most hydrogen explosion accidents lead to major accidents, it is very important to secure safety when using hydrogen energy. In order to utilize hydrogen energy, it is essential to secure the safety of hydrogen storage containers used for production, storage, and transportation of liquid hydrogen. In this paper, in order to evaluate the structural safety of a hydrogen-filled pressure vessel, the behavioral characteristics of gas pressure were analyzed by finite element analysis. SA-372 Grade J / Class 70 was used for the material of the pressure vessel, and a hexahedral mesh was applied in the analysis model considering only the 1/4 shape because the pressure vessel is axisymmetric. A finite element analysis was performed at the maximum pressure using a hydrogen gas pressure vessel, and the von Mises stress, deformation, and strain energy density of the vessel were observed.

전세계적으로 저탄소 친환경에너지로 다변화 정책이 진행되고 있으며, 그 정책 중 하나가 수소경제 활성화이다. 수소경제 활성화 정책으로 수소 공급을 위한 수소충전소의 보급이 가속화됨에 따라 사고발생의 위험도 커지고 있다. 수소의 폭발사고는 대부분 대형사고로 이어지기 때문에 수소에너지를 사용함에 있어 안전성을 확보하는 것은 매우 중요하다. 수소에너지를 활용하기 위해서는 액화수소의 생산, 저장, 운송 등에 사용될 수소저장 용기의 안전성 확보는 반드시 필요하다. 본 논문에서는 수소충전용 압력용기의 구조안전성을 평가하기 위해 가스 압력에 대한 거동특성을 유한요소해석으로 분석하였다. 압력용기의 재료는 SA-372 Grade J / Class 70을 사용하였고, 해석모델은 압력용기가 축대칭 형상이므로 1/4 형상만 고려하여 6면체 메쉬를 적용하였다. 수소가스 압력용기를 사용 최고 압력에서 유한요소해석을 하였으며, 해석 결과인 용기의 von Mises Stress와 변형량, 변형률 에너지 밀도를 관찰하였다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 연구비 지원으로 수행되었으며, 지원에 감사를 드립니다(NO. 20215810100040).

References

  1. Park J. S., Jeung S. S., and Chung J. H., " Cycling life prediction method considering com- pressive residual stress on liner for the filament-wound composite cylinders with metal liner", Composites Research, 19(1), 22-28, (2006) https://doi.org/10.7234/KSCM.2006.19.1.022
  2. Hu Y. D., HU Z. Z., and CAO S. Z., "Theoretical study on Manson-Coffin equation for physically short cracks and lifetime prediction", SCIENCE CHINA, 1-9, (2011)
  3. Park K. D., Kim J. H., C. G. Jung C. G., Ha K. J., "A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature", Journal of Ocean Engineering and Technology, 14(3), 78-83, (2000)
  4. Cho S., Kim Y. G., Ko Y. B., Lee I. K., "Behavior characteristics of hydrogen storage vessel(TYPE 1) under gas pressure and temperature conditions using FEM", KIGAS, 24(6), 61-69, (2020)
  5. Park K. D., Ha K. J., Park H. D., " A Study of Stress Ratio Influence on the Fatigue Crack Growth Characteristics of Pressure Vessel Steel at Low Temperature", Journal of Ocean Engineering and Technology, 15(3), 100-106, (2001)
  6. Lee J. J., Kim D. H., Choi Y. J., Kim C. W., Lee S. S., "Design Optimization of Type 2 Composite Overwrapped Pressure Vessel for Fuel Cell Vehicle using Finite Element Method", Transactions of the Korean Society of Mechanical Engineers, 44(3), 241-246, (2020) https://doi.org/10.3795/ksme-a.2020.44.3.241
  7. Kim C. K. and Cho S. H., "FE Analysis on the Design Safety of Inner Tank Bottom Plate in Terms of Cryogenic Temperature Loadings", KIGAS, 8(3), 8-15, (2004)
  8. Kim C.K., Cho S. H., Suh H. S., Hong S. H., Lee S.R., Kim Y.G., and Kwon B.G., "On the Leakage Safety Analysis of 9% Nickel Type LNG Storage Tank with Thermal Resistance Effects", KIGAS, 9(1), 1-9, (2005)
  9. Wee S. U.,, Seok C. S.,, Koo J. M., and Lee J. M., "Prediction of Low-Cycle Fatigue Life of In738LC Using Plastic Strain Energy Density", J. Korean Soc. Precis. Eng., 36(4), 401-406, (2019) https://doi.org/10.7736/kspe.2019.36.4.401
  10. Coffin Jr, L. F., "A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal," Transactions of the American Society of Mechanical Engineers, 76, 931-950, (1954)
  11. Manson S. S., "Behavior of Materials Under Conditions of Thermal Stresses," NACA Technical Report 1170, 317-350, (1954)