본 논문에서는 양자물리학 분야에서 Lanczos 방법의 수렴을 가속화하기 위해 개발된 바 있는 행렬의 거듭제곱 기법을 동역학 분야의 Lanczos 순환식에 도입함으로써 구조물의 고유치 해석의 효율성을 향상시켰다 행렬의 거듭제곱 기법을 도입한 Lanczos 방법이 기존의 방법보다 수렴성이 더욱 우수하다. 수치예제를 통해 행렬의 거듭제곱 기법을 도입한 Lanczos 방법의 효율성을 검증하였으며 제안방법을 통한 고유치 해석에 있어서 가장 적합한 거듭제곱값을 제시하였다.
In this paper, the acceleration is studied for the rigid-plastic FEM of metal forming simulation. In the FEM, the direct iteration and Newton-Raphson iteration are applied to obtain the initial solution and accurate solution respectively. In general, the acceleration scheme for the direct iteration is not used. In this paper, an Aitken accelerator is applied to the direct iteration. In the modified Newton-Raphson iteration, the step length or the deceleration coefficient is used for the fast and robust convergence. The step length can be determined by using the accelerator. The numerical experiments have been performed for the comparisons. The faster convergence is obtained with the acceleration in the direct and Newton-Raphson iterations.
The three dimensional Navier-Stokes equations in rotational coordinate are solved using a multigrid algorithm for the calculations of turbulent flows in centrifugal compressor impellers. Some numerical studies are made in applying the multigrid algorithm for the turbulent flow calculations with the standard κ-ε equations. The present method is used to calculate the flow fields of Mizuki's B-type and Niigata Ms. 350 centrifugal compressor impellers. Fast convergent steady-state solutions are carefully examined, comparing the static pressure distributions along the impeller flow passage and also in the diffuser with experimental data. Performance of a centrifugal compressor system is also numerically validated by comparing the performances of the impeller and the diffuser individually.
목적: 본 논문에서는 신경망을 이용한 자기공명영상의 분류에 있어 결정론적 이완 방법(deterministic relaxation)과 응집 군집화(agglomerative clustering) 방법에 의한 개선된 영상 분류방법을 제시한다. 제안된 방법은 신경망을 이용한 영상의 분류시 지역적 최소치로의 수렴문제와 입력 패턴의 증대로 인하여 수렴 속가 늦어지는 문제를 해결한다. 대상 및 방법: 신경망을 이용한 영상의 분류는 지역적 계산과 병렬 계산이 가능한 특성을 갖고 있어 기존의 통계적 방법을 대신하는 방법으로 주목을 받고 있다. 그러나 일반적으로 신경망에 의한 분류알고리즘이 지닌 문제점의 하나는 에너지함수가 항상 전역적 최소치로 수렴하지 않고 지역적 최소치로도 수렴할 수 있다는 점이고, 또 다른 문제점은 반복수렴을 수행하는 에너지함수의 수렴속도가 너무 늦다는 점이다. 따라서 지역적 최소치로의 수렴을 방지하고 전역적 최소치로의 수렴속도를 가속화시키기 위하여 본 논문에서는 결정적 이완 알고리즘의 하나인 MFA(Mean Field Annealing) 방법을 적용하여 지역적 최소치로의 수렴문제를 해결하는 방법을 제시한다. MFA는 모의 애닐링의 통계적 성질을 변수의 평균값에 적용하는 결정론적인 수정 법칙들로 대신하고, 이러한 평균값을 최소화함으로서 수렴속도를 개선한 방법이다 아울러 신경망이 갖고 있는 문제점인 과다한 클래스 패턴의 생성에 따른 처리속도 지연의 문제점을 해결하기 위하여 응집 군집화 알고리즘을 이용하여 영상을 구성하는 군집을 결정하여 신경망에 입력되는 값을 초기화하여 영상패턴이 증가되는 것을 제한하였다. 결과: 본 논문에서 제시된 응집 군집화 방법 및 결정론적 이완 방법은 신경망에 의한 자기공명영상의 분류 시 발생할 수 있는 지역적 최적 치로의 수렴 문제를 해결하여 전역적 최적화로 신속히 수렴함을 알 수 있었다. 결론: 본 논문에서는 클러스터의 분석과 결정론적 이완 방법에 의하여 신경망에 의한 자기공명영상의 분류결과를 향상시키기 위한 새로운 방법을 소개하였으며 실험결과를 통하여 그러한 사실을 확인할 수 있었다.
본 논문에서는 부채꼴형 Mindlin 평판의 엄밀한 휨진동해를 제시하였다. 진동변위의 두 가지 적합 함수식, 즉 대수삼각다항식과 Mindlin 모서리함수를 Ritz방법에 적용하였다. 모서리함수는 부채꼴형 평판의 둔각 정점부에 존재하는 모멘트와 전단력의 특이도를 동시에 고려하고 있다. 이러한 모서리함수는 진동수의 수렴속도를 가속화한다. 본 연구에서는 부채꼴형 각도의 범위와 두께 비에 따른 엄밀한 진동수 및 수직진동 변위의 전형적인 등고선을 제시하였다.
본 논문에서는 고정, 단순, 또는 자유 연단 조건의 세 가지의 다른 조합을 갖는 마름모꼴형 평판의 진동에 대한 엄밀한 해석방법을 제시하였다. 본 논문의 주된 관점은 마름모꼴형 평판 둔각모서리에서 형성되는 모멘트특이도를 엄밀히 고려하여 해석하는 것이다. 단 영역 Lagrangian 범함수의 정상조건이 Ritz방법을 이용하여 유도되었다. 진동수의 수렴에 대한 연구는 모서리함수가 수렴속도를 가속화하는 것을 보여주고 있다. 본 논문에서는 모서리 응력특이도의 영향이 이해될 수 있도록 상당히 큰 둔각모서리를 갖는 마름모꼴 형 평판에 대한 정확한 진동수와 수직진동변위의 전형적인 등고선을 제시하였다.
본 연구는 스포츠 산업 경쟁력 강화와 생존 전략 마련을 위하여 글로벌 스포츠 시장 트렌드의 미래 변화를 예측하기 위한 것이다. 연구를 위하여 3차에 걸친 델파이 조사에 12개국 21명의 전문가가 참여하여 51개의 미래 예측 의견을 제시하였고, 의견에 대한 참여자들의 수렴을 거쳐 다음과 같은 결론을 얻었다. 첫째, 도핑, 사행 산업 등 윤리적 이슈가 글로벌 시장에 중요한 영향을 미칠 것이다. 둘째, 유소년 스포츠 시장은 지속적으로 성장할 것이다. 셋째, 스포츠는 건강 산업으로서의 중요성이 부각 될 것인데, 특히 저비용 건강 서비스 시장과, 고령인구 대상의 건강 기능 시장이 성장 할 것이다. 넷째, 스포츠 산업의 첨단 기술 /문화 등과의 융 복합은 더욱 가속화 할 것이다. 다섯째, 메가스포츠 이벤트는 다양한 비판적 논란으로 인하여 미래가 불투명해질 것이다. 여섯째, 소셜 미디어 등 신 미디어와 구 미디어의 스포츠에 대한 영향력은 더욱 증대될 것이다. 마지막으로 문화현상으로서의 스포츠시장 글로벌화는 더욱 가속화 될 것이다.
2020년 이후 COVID-19에 따른 학습방법의 변화는 글로벌 에듀테크 시장의 성장세로 이어지면서 에듀테크 시장의 두드러진 성장과 가속화 현상과 함께 직업능력개발과 에듀테크의 결합이 가속화될 것으로 전망된다. 본 연구에서는 에듀테크의 역할과 기능, 그리고 향후 평생직업능력개발 분야에서의 활용과 기대를 수렴하여 에듀테크를 포괄적으로 재정의(working definition)하였다. 재정의의 이면에는 인공지능(AI), 빅데이터, 가상/증강현실(VR/AR), 클라우드 서비스 등의 첨단기술이 더욱 확장된 디지털화된 직업훈련 시대를 앞당기는 혁신기술로 역할이 강화될 것이라는 전제가 함축되어 있으며, 이를 통해 개별화된 학습경험 맞춤형 학습의 평생직업능력개발 체계를 지향하게 될 것이다. 이 같은 에듀테크의 정의에 기초하여 본 연구의 주요 내용은 에듀테크 기술동향을 분석하면서 직업훈련에 전파, 공유하기 위한 목적에서 실제 테크놀로지가 교육 및 직업훈련에 접목된 수준이 어느 정도인지를 전문가 서면 인터뷰를 바탕으로 살펴보고, 직업훈련의 관점에서 유의미한 시사점을 찾아 에듀테크 기반 평생직업능력개발 선도사업 모델을 제안한다.
PSO(Particle Swarm Optimization)는 군집(swarm)을 구성하는 단순한 개체들인 입자(particle)들이 각자의 경험을 공유하여 문제의 해답을 찾는 최적화 알고리즘으로 다양한 분야에서 응용되고 있다. PSO에 대한 연구는 최적화를 위해 군집이 적합한 영역으로 빠르게 수렴하도록 하는 파라미터 값의 선정, 토폴로지, 입자의 이동에서 주로 이루어지고 있다. 표준 PSO 알고리즘은 입자 자신과 최고의 이웃이 제공하는 정보만을 이용해서 이동하므로 다양한 영역을 탐색하지 못하고 지역적 최적점에 조기 수렴하는 경향이 있다. 본 논문에서는 군집이 다양한 영역을 탐색하기 위해, 각 입자는 더 나은 경험을 가진 이웃입자들의 정보를 상대적인 중요도에 따라서 참조하여 이동하도록 하였다. 다양한 영역의 탐색은 표준 PSO 알고리즘보다 지역적 최적화의 확률을 줄이고 탐색 속도를 가속화하며 탐색의 성공률을 높일 수 있다. 또한 군집이 지역적 미니멈으로부터 벗어나기 위한 검사 전략을 제안하여 탐색의 성공률을 높였다. 제안한 PSO 알고리즘을 평가하기 위하여, 벤치마크 함수들에 적용한 결과 최적화의 진행 속도 개선과 탐색 성공률의 향상이 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.