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The Influence of Corner Stress Singularities on the Vibration of
Rhombic Plates Having Various Edge Conditions
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ABSTRACT : An accurate method is presented for vibrations of rhombic plates
having three different combinations of clamped, simply supported, and free
edge conditions. A specific feature here is that the analysis explicitly
considers the moment singularities that occur in the two opposite corners
having obtuse angles of the rhombic plates. Stationary conditions of
single-field Lagrangian functional are derived using the Ritz method.
Convergence studies of frequencies show that the corner functions accelerate
the convergence rate of solutions. In this paper, accurate frequencies and
normalized contours of the vibratory transverse displacement are presented
for highly skewed rhombic plates, so that a significant effect of corner stress
singularities may be understood.
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1. INTRODUCTION

Rhombic plates are used in several
practical structures, such as skew bridge or
building decks, aircraft wings, ship hulls
and vehicle bodies. A considerable quantity
of natural frequency data for skew plates
has been offered by a number of researchers
employing the Ritz, Galerkin, and other
approximate procedure. Durvasula'’ used
the Galerkin method to determine natural
frequencies for clamped skew plates.
Mizusawa et al.'’” used a Ritz technique
with B-spline functions to determine the
frequencies of skew plates with a variety of
skew angles and boundary conditions. Liew

and Lam®

presented frequencies for skew
plates under a variety of edge conditions
using the Ritz method with two-dimensional
orthogonal plate functions. A Galerkin
approach was adopted by Laura and

@ to determine the upper bound

Grosson
frequencies for a simply supported rhombic
plates with a variety of skew angles.

The shortcoming of the various approaches
used by the cited researchers is that each
has not adequately addressed the unbounded
bending stress singularities at a corner
having an interior angle larger than 90°
(i.e., obtuse). A care must be taken in
formulating the approximate procedure in
order to avoid erroneous results for rhombic
plates having a high degree of skewness.
Fundamental stress singularity behavior at
obtuse corners in plate flexure problems
involving static loads was investigated by

(5)

Williams Along these same lines, the

importance of considering re-entrant corner
stress singularities on the natural vibra-
tions of variously supported rhombic plates
has been established in previous work®”.

This paper presents a continuing inves-
tigation into the influence of corner stress
singularities on the flexural vibration of
rhombic plates having three different com-
binations of clamped, simply supported,
and free edge conditions. Here, the bending
stress singularities that exist at the two of
the four interior corners are taken into
account explicitly. A Ritz procedure is
employed in which the dynamical energy
functional is constructed from classical
plate theory. The assumed transverse
displacement functions consist of a math-
ematically complete set of algebraic poly-
nomials and two admissible sets of corner
functions. The latter functions account for
the singular behavior of bending moments
at the two corners having obtuse angles.
The main objective of this follow-up in-
vestigation is to present accurate non-
dimensional frequencies and mode shapes,
specifically for highly skewed plates, for
which no accurate results are previously
available.

2. METHOD OF ANALYSIS

Shown in Fig. 1 is a rhombic plate having
typical length, ¢, and diagonal half-lengths,
a and b, measured along the Cartesian
axes, x and y, respectively. The vibratory
transverse displacement of the rhombic

plate is w=w(x,y, ), where ¢ is time. For
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free vibrations, the temporal dependence of
the transverse displacement w is assumed
to oscillate cosinusoidally:

w(x, y, )= W(x, y) cos wt (1)

where o is the circular frequency of
vibration.

Considering this assumption one can
obtain the maximum strain energy Vmax due

to bending a vibratory cycle:

D 2
Vmax - 2 A[ (Xx+ Xy , (2)
_2(1 "V)(Xny—-XJch)]dA

Fig. 1 Geometry of rhombic plates
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where dA=dxdy, D=Ehr[12(1— 1% is the
flexural rigidity, h is the plate thickness
(not shown in Fig. 1), E is Young's

modulus, v is Poisson’s ratio, and x,. Xy,
and x,, are the maximum bending and

twisting curvatures:

Similarly, the maximum Kkinetic energy is
. .
ow
T s =24 fA W2 dA, 3)

where e is the mass per unit area of the
plate. ‘

In the present Ritz approach, displacement
trial functions are assumed as

W(x, )= Wyx,»)+ W, (x,%

(4)
+ W (x,y),

where W, is an admissible and mathe-
matically complete set of algebraic polynomials,

and W, and W, are two sets of corner

functions, which account for the singular
bending stress behavior at the obtuse
corners 1 and 2, respectively (see Fig. 1).

It should be noted that simply supported- .
free (S-F), simply supported-simply supported
(5-9), and clamped-free (C-F) edges have
singular bending stresses when the in-
cluded angle (a) formed by the two edges
at corners 1 and 2 is larger than ap-
proximately 90° (i.e.. obtuse)®. No such
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SFCC SSCF CFSF

Fig. 2 Rhombic plates with various edge conditions

unbounded stress exists clamped-clamped
obtuse for a<180°®

Three combinations of rhombic plate edge
conditions are examined, which are here-
after described as SFCC, SSCF, and CFSF,
(see Fig. 2, whereby only those edges which
are free have been identified by the letter
F). These edge conditions are identified
according to the numbered edges shown in
Fig. 1 (e.g., S-F~-C-C corresponding to edges
1-2-3-4 as shown).

Let Gj correspond to the equation of the
J™ edge of the rhombic plate shown in Fig.
1. Thus,

Gl=b“‘y+'—g'x, Gz=b+y+—3x,
Gg=b+y—~g-x, G4=b—y—~—§x. ®)

The polynomials W, are assumed as:

SFCC plate : Wy(x, ) = GIGEGZ:;& (6a)

SSCF plate : Wy(x, y) = G,G,G3¢, (6b)

CFSF plate : Wy(x, y)= G3G39, (6¢)
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where
= éﬁ;:Amx”'y”, (6d)

and A, are undetermined coefficients, m,

n = 0,1, 2, -, and W, satisfies the

vanishing displacement and normal slope
conditions on all the clamped boundaries as

required. The corner functions W, (i = 1,

2) may be written as

SFCC plate : W, (x,y)=G3Gié,
W, (x,3) =0, (7a)

SSCF plate : W, (x,y) = G1&,
VVCZ(JC, y) = Gl Gz 62,‘, (7b)

CFSF plate : W, (x,3) = G;3 &,

W, (%, 3) =Gi&, (7c)
where
Ei= 2B WY, )

in which B;, are arbitrary coefficients, and

W7, are biharmonic functions, which satisfy

the S-F, and S-S, and C-F boundary
conditions along two radial edges of a

)

sector plate domain®. W, is zero for the

second of Eq. (7a) because clamped-
clamped corners no stress singularities for

a<180°®. For all of the plate edge

conditions, W7, is the k™ function of the set:
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SFCC plates :

Wi (r, 6)=r1"" sin(+1)8,
- hlkCOS(/‘k"*‘ 1) 01
- hngin(/‘k" 1) 91
+ h3kCOS(Ak"’ 1)31],

(8a)

with
, __Sin(y+Da/2

L7 cos(Apt+ Da/2

_ nksin(/lk+l)a/2
"= "S- Dar2 (8b)
o = msin(d,+1) a/2

%7 cos(A,—1a/2 °
where

_ (At DO—1D
"= - D+ G+ (8c)

SSCF plates :

7’1““005(/11;'1”1)91.

/]kz (Zk"’ l)ﬂ/a_l
TIAFHCOS(I‘/,"‘ 1)91,

Av=Qk—1r/a—1
i lsin(d,+1)6;,
Av=2km/a—1
Aptl .
ri' sin(A,—1) 6,
/1/,= 2kn’/a-1,

WZ,,(”l )=

(9a)

Wi (7, 0)=rs""" [sin(;+1)6,
+g1,co8(A,+1) 6, (9b)
+g2ksin(/1k— 1) 52
+ g3,c08(4,— 1) 6],
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p,= (Arl)rz.sin(/lﬁl)-g—
— (At 1) 7,co8(A,+ 1)—5‘— sin(i,— a
+ (A= 1) 7,,sin(A,+ 1)—5 cos(Az—1e,

(9d)

Hy, = (A,,-I-l)[yl,cos(/h-—l)-g—
—yz,cos(,i,,—l)—gcos(/z,,+1)a (9e)
~ 75,51 = 1% sin(d,+ 1)a],

u3,= (At 1)[ 71,8in(A,— 1)_%

+ msin(/lk—l)—g“

cos(A,+Da 3
—73,c08(A,—1)

5 sin(Au+ 1)a],

0= (Ak— 1 YZ,COS(/]k+ 1)—5—
—(Apspr1,sin(A,+ 1)—‘2’- sin(A;—1a
— (A= Dri,co8(Ast+ D5 cos(a—Da,

(9g)
in which

.= Av=1D)+ @B+,
72,= (A+ D(v—1), (%h)
73,= (A= D(v—1);

CFSF plates :
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Wi (1, 0)=71"" sin(A,+1)6,
. +g1,co8(A,+1) 6,
+g2,sin(/1,,— 1) 01
+ g3,c0s(A,—1) 6,1,

(10a)
. Al .
Wt‘z.( 72, Oy=r12 [ sin(A,+1)8,
— hy,cos(A,+1) 6,
- hZA»sin(/{k— 1) 02
+ k3, cos (Ag-1y621,
(10b)

with Egs. (8b), (8¢c), and (9¢)-(9h) for #,
and g, (! = 1, 2, 3). In the above Egs.
(8)-(10), the local polar coordinates ( 7;,
8;) originate at corners 1 and 2 (Fig. 1),

and a is the included angle of corners 1
and 2.

In Eq. (9a) (i.e., S-S edge), the A; are so
defined, whereas in Egs (8), (9b)-(9h), and
(10), the A, are the roots of the character

equation:

C-F boundary condition:

2 — 4
sinAe= TTTHGET Y (11)
-——%—::—Eﬁismza

S-F boundary condition:
sin24,a= —g—;% Agsin2a. (12)

Recall that the corner functions W7, are

expressed in terms of the local polar
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coordinates (7;, 8;). These functions are

then transformed to the global Cartesian
coordinates (x, y) through the following
relations:

n= [(x+ a)2+y2] 2 (13a)
6, =tan "[y(x+a) 1],

r= [(x—a)2+y2] 12 (13b)

6,=tan "[Wx—a) ']

The Ritz minimizing equations are for-
mulated by substituting Eqs. (4)-(10) and
(13) into (2) and (3) and taking the partial
derivatives:

3 _
74, Viax = Tanax) =0, (14)

9 _ -

This results in a set of linear ho-

mogeneous algebraic equations involving

the constants A,, and B,,. The vanishing

determinant of these equations yields a set
of eigenvalues (i.e., natural frequencies),
expressed in terms of the non-dimensional
frequency parameter wa™V o/D. which is
particularly suitable for the rhombic plate.
The associated eigenvalue problem is
positive definite, and thus the frequency
and mode shape data has been obtained by
using QL algorithm combined Cholesky
factorization®'?.

Eigenvectors involving the coefficients

A,.. and B; may be determined in the

usual manner by substituting the eigen-

F=EUTEES =R



values back into the homogeneous equa-

tions. Normalized contours of the asso-

ciated mode shapes may be depicted on a

x-y grid in the rhombic plate domain once

the eigenvectors are substituted into Egs.

(6d) and (74d).

3. CONVERGENCE STUDIES AND

MODE SHAPES

Table 1 summarizes a convergence study for

the first six non-dimensional frequencies

wa™ o/D of SSCF rhombic plates having

Table 1. Convergence of frequency parameters wa®V p/D for SSCF rhombic plate (bla=3)

Corner (M+1)X(N+1) polynomial terms ( W)
Mode | punctions
No.
(W 8x8 9%9 10%10 11x11 12x12 13x13 14x14
0 2.5368 2.5029 2.4888 2.4719 2.4652 2.4561 2.4526
4 2.4309 2.4295 2.4293 2.4289 2.4289 2.4288 2.4287
1 8 2.4297 2.4290 2.4290 2.4288 2.4288 2.4287 2.4287
12 2.4289 2.4287 2.4287 2.4287 2.4287 2.4287 —
16 2.4288 2.4287 2.4287" — — —— —
0 5.6447 5.6145 5.6094 5.5921 5.5885 5.5775 5.5747
4 5.5011 5.4990 5.4981 5.4977 5.4976 5.4975 5.4975
2 8 5.4986 5.4979 5.4976 5.4975 5.4975 5.4974 5.4974
12 5.4977 5.4975 5.4974 5.4974 5.4974 5.4974 —
16 5.4975 5.4974 5.4974* — — — —
0 8.1916 8.1112 8.0587 8.0398 8.0069 7.9987 7.9764
4 7.9386 7.8868 7.8837 7.8794 7.8789 7.8785 7.8784
3 8 7.9300 7.8835 7.8822 7.8786 7.8785 7.8782 7.8782
12 7.8856 7.8791 7.8788 7.8782 7.8782 7.8782 —
16 7.8813 7.8789 7.8778* — — — —
0 11.705 11.633 11.512 11.496 11.470 11.463 11.451
4 11.524 11.482 11.421 11.417 11.411 11.410 11.410
4 8 11.502 11.464 11.419 11.415 11.410 11.410 11.410
12 11.477 11.436 11.416 11.413 11.410 11.410 -
16 11.419 11.414 11.411° — — — —
0 12.885 12.769 12.631 12.576 12.530 12.506 12,482
4 12.562 12.518 12.424 12.410 12.406 12.403 19 403
5 8 12.523 12.490 12.419 12.408 12.404 12.403 5
12 12.495 12.454 12.408 12.406 12.402 12.402 ___
16 12.418 12.410 12.404° -— — —
0 17.471 16.495 16.377 16.052 16.033 15.998 15.992
4 17.166 16.397 16.281 15.980 15.969 15.937 15.936
6 8 17.097 16.362 16.273 15.977 15.968 15.937 15.936
12 16.386 16.122 16.060 15.958 15.950 15.936 —
16 16.238 16.084 15.967* — — — ——

*singular value decomposition eigenanalysis

—— no results due to matrix ill-conditioning

H 123 4% 2000 88
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bla=3 (or @ = 143°). In all calculations,
the Poisson’s ratio (v) has been set to 0.3.

Use of the corner functions W, in conjunction
with the polynomials W, permits one to

represent to properly the corner stress
singularities in rhombic plate vibrations.
The (M+1)x(N+1) number of polynomial
terms ( W,) shown in Table 1 indicate M+1

terms retained in the x-direction and N+1
terms retained in the y-direction (see Egs.
(6)). The 2K number of corner functions

( W.= W, + W) define K corner functions

used in Egs. (7) for each of corners 1 and 2.

For large solution determinant sizes,
however, the mass operator used in a QL
reduction algorithm may become ill-condi-
tioned, causing some eigenvalue extraction
algorithm to abort. Hence, the data marked
with a superscript asterisk (*) in Table 1
were obtained by using an algorithm based
upon two numerical techniques. These are:
(i) a Householder reduction of the dynam-
ical matrices to bidiagonal from with matrix
diagonalization achieved by using a QL

©19 2nd (ii) a singular

an

procedure with shift
value decomposition technique using a
threshold (matrix conditioning) number of
1072,

Close scrutiny of the frequency data in
Table 1 shows that by using polynomial

terms alone typically results in slow con-
vertgence of upper bound wa™V o/ D values.

However, the convergence rate of a)az\/_F/B
is considerably accelerated when a few
corner functions are added to the poly-
nomials. This is mainly attributed to the
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influence of vibratory bending stress singu-
larities at the obtuse corners 1 and 2 (Fig.
1), which are examined more closely below.
For example, using 100 polynomial terms
(10%x10) without corner functions to re-
present the fundamental (lowest frequency)
mode of an SSCF plate with #/a=3 (see
Table 1) yields an error of approximately
2.4% in the predicted frequncy. Increasing
to 196 polynomial terms (14%X14) still
results in an error of 1.0%. When the trial
set of 100 polynomials are supplemented
with 4 corner functions the predicted
frequency error reduces to a negligible
amount of 0.02%. A similar level of
solution accuracy may be seen in all mode
of the SSCF (Table 1) and the other
boundary condition cases (i.e., SFCC and
CFSF plates, which are not shown here for
brevity).

Depicted in Fig. 3 are the vibratory
transverse displacement contours corre-
sponding to the least upper bound frequency
data for the first six modes listed for SFCC,
SSCF, and CFSF. The displacement con-
tours in Fig. 3 are normalized with respect

to the maximum displacement component (i.e.,
~ 1< W W <1. where the negative values
of W W are depicted as dashed contour
lines in Figs 3a and 3b). Non- dimensional

frequencies wa® p/D shown in Fig. 3 cor-
respond to the con- verged values. Nodal
patterns of each mode are shown in Fig. 3
as slightly darker contour lines of zero

displacement W Wy, =0 during vibratory

motion.
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Mode Number
Case
1 2 3 4 5 6

SFCC

4.1090 6.7808 10.108 13.036 14.815 18.417
SSCF

2.4287 5.4974 7.8782 11.410 12.402 ; 15.936
CFSF

2.4245 4.0517 5.7480 7.9417 10.713 12.130

Fig. 3 Normalized transverse displacement contours ( W W, ) for the first six modes of SFCC, SSCF and
CFSF rhombic plates ( b/a=3)
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4. FREQUENCY RESULTS

Table 2 shows a summary of accurate
frequencies for SFCC, SSCF, and CFSF
rhombic plates having skew angles &

Table 2. Frequency parameters wa’V p/D for
rhombic plate

Axill(::vﬁ) e | oa I"I{‘I’ge SFCC | SSCF | CFSF
1 | 17.540 | 16.792*| 15.195
(17.615)"| (16.865)| (15.285)
2 | 36.025 [31.113*| 20.591
(36.064) | (31.138)((20.673)
3 | 51.818 |51.394%| 39.741
(52.065) | (51.631){(39.775)
4 | 71.082 | 64.020" | 49.458
(71.194) | (64.043)| (49.730)
5 | 74.327 | 67.537"| 56.296
(74.349) | (67.646) | (56.617)

19.219 | 16.842 | 15.848
37.688 | 31.742 | 21.336
56.032 | 53.467 | 40.242
69.688 | 62.584 | 52.116
83.180 | 74.186 | 59.670

23.326 | 18.302 | 17.850
42.560 | 35.426 | 24.231
68.326 | 59.456 | 42.693
74.499 | 68.225 | 59.883
102.44 | 91.197 | 70.914

32.183 | 21.455%| 21.348
54.425 | 45.094" | 31.948
85.668 | 68.621* | 49.764
100.82 | 90.426* | 70.450
125.68 | 109.90* | 90.931

53.306 | 27.829 | 27.800
87.978 | 66.813 | 52.715
123.06 | 95.559 | 67.622
165.94 | 138.65 | 93.350
187.31 | 151.52 | 124.55

134.84 | 46.496 | 46.453
221.22 | 113.90 | 113.79
196.63 | 193.36 | 134.73
358.72 | 270.74 | 192.40
44566 | 328.85 | 221.12

15° ]105°| 1.303

Ot W W IO =

30° {120°]1.732

Ol W N

45" |135° 2.414

60° | 150° 3.732

75 |165°| 7.596

Ot W | LR W= Gth Wi~

*singular value decomposition eigenanalysis
+Results in paranthesis cf Leissal2)
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(corner angles ¢) = 15°(105%, 30°(120°),
45°(135°), 60°(150°), and 75°(165°). Listed
therein are the first five non-dimensional
frequencies wc™¥ p/D (c being the side
length, as shown in Fig. 1). Accurate qual-
itative modeling of the singular stress
phenomena dictates that for large 8(e), a
considerable number of corner functions are
required at corners 1 and 2 for the SSCF
and CFSF rhombic plates, and at corner 1
for the SFCC plates. Sufficient numbers of

polynomials ( W,) and corner functions

(W) were used to yield at least five
significant digits accuracy of the fre-
quencies shown in Table 2, whereby the
converged solution sizes employed are
summarized in Table 3.

It may be seen in Table 2 that as the side
wc™V o[D

increases with increasing A, and that the

length ¢ remains constant

Table 3. Number of polynomial and corner
function terms required of the five
significant figure frequency convergence

of Table 2
B Polynomial Corner
Edges (degrees) terms function
0 12x12 0
15, 30 12%X12 2
SFCC 45 12x12 4
60 14x14 8
75 16x16 8
0, 15, 30 12X12 4
45 12X%12 8
SSCF 60 14% 14 8
75 16%x16 12
0 12x12 0
15, 30 12x12 4
CFSF 45 12%x12 8
60 14x14 12
75 16%X16 16
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highest frequency values are obtained for
the SFCC plates, which is to be expected.
For all plates, substantial changes in
wc™ p/D traceable to plate skewness are
most distinguishable for 45° <A< 75°,
where one can observe increasingly greater
frequency changes as the mode number
increases. Frequency solutions for the

square plates (2 = 90°, 8 = 0° are lower

upper-bound wczmb values compared to
those values reported in reference (12],
which were obtained by employing the Ritz
method with beam eigenfunction approximations

of the plate’s normal displacement.

5. CONCLUDING REMARKS

This paper presents the first known
solutions for free vibrations of classically
thin, skewed SFCC, SSCF, CFCF rhombic
plates, in which stress singularities
explicitly include at the two obtuse corners.
The dynamical energies of the plate have
been extremized using the Ritz method
with the transverse displacement field
approximated by mathematically complete
polynomials and admissible corner functions
that account for the unbounded stresses at
the obtuse corners.

The feasibility of the assumed hybrid
displacement field has been demonstrated
by means of a convergence table. It is
shown that poor convergence of frequencies
is typically obtained when only polynomial
displacement trial functions are used, and
that upper bound convergence of solution
improves significantly when the hybrid trial

H 123 43 20004 8%

sets of polynomials and corner functions
are simultaneously utilized. The accurate
frequencies and mode shapes for highly
skewed (8>45°) rhombic plates have been
offered here for comparison with future

data obtained by other investigators.
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