• Title/Summary/Keyword: 속채움 재료

Search Result 12, Processing Time 0.025 seconds

An Experimental Study on Connection Strength between Tie-bar and Facing block composing Reinforced Earth (보강토옹벽을 구성하는 타이바와 전면블록의 연결강도에 관한 실험연구)

  • Lee Seung-Hyun;Kim Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.404-408
    • /
    • 2006
  • In this paper, connection strength between facing block and tie-bar was investigated through experimental study with varying in-fill material such as concrete, soil and crushed stone. Also, connection strength between anchor block and tie-bar was investigated with varying in-fill material. According to the experimental results, in case of using in-fill concrete, connection strength between facing block and tie-bar was larger than allowable tension load of tie-bar. Whereas in case of using in-fill soil or crushed stone, connection strength between facing block and tie-bar was less or similiar to allowable tension load of tie-bar. Connection strength between anchor block and tie-bar for which crushed stone was used as in-fill material, was larger than allowable tension load of tie-bar.

  • PDF

Strength Characteristics of the Anti-washout Grout Mixed with Coarse Fill Materials (점성개질제를 이용한 수중 불분리성 그라우트재의 수중 속채움 보강 특성 분석)

  • Kim, Uk-Gie;Cho, Sam-Deok;Park, Bong-Geun;Kim, Juhyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.25-33
    • /
    • 2013
  • This study introduces strength characteristics of the anti-washout grouting material using viscous modifiers and its characteristics mixed with coarse materials. Especially, this study focused on the strength characteristics of the grouts mixed with sea water. It is found that the anti-washout grout mixed with sea water has enough strength and good resistance to segregation just like that with fresh water. Also, a small scale test was performed to evaluate the solidification characteristic of the anti-washout grout mixed with coarse fill materials. It is also found that the strength of anti-washout grout mixed with coarse fill materials is greater and better segregation resistance than those of conventional grout with fill materials.

A Case Study on the North Seawall Construction of Ulsan Newport (울산신항 북항 방파호안 축조공사 시공사례)

  • Yun, Gi-Seung;Jeong, Uk-Jin;Kim, Yong-Gyun;Hong, Jang-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.206-208
    • /
    • 2018
  • 울산신항의 활발한 개발로 인하여 기존에 설치되어 있던 온산항북방파제는 원래의 목적인 방파제로서의 기능은 사라지고, 울산항 3항로에 간섭된 지장물이 됨에 따라, 기존방파제의 철거를 수행하였으며 철거순서는 상치 콘크리트 깨기, 속채움 제거, 케이슨 절단 및 천공, 인양 및 제거, 케이슨 파쇄의 순서로 진행되었다. 특히, 파쇄한 콘크리트는 크라싱 작업을 통해 재생골재로 생산하였으며, 향후 신설케이슨의 속채움 재료로 재활용하는 것으로 하여 경제적 자원재활용에도 기여하고 있다.

  • PDF

Development of Rapid Hardening Backfill Material for Reducing Ground Subsidence (지반함몰 저감을 위한 속경형 하수관거 뒤채움재료 개발)

  • Ryu, Yong-Sun;Han, Jin-Gyu;Chae, Woo-Ri;Koo, Ja-Sul;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.13-20
    • /
    • 2015
  • Inappropriate backfill material and poor compaction cause the damage to sewer and ground settlement. To deal with such problem, flowable backfill material has attracted attention recently. A basic study was conducted in a bid to obtain optimum mixing ratio of backfill material with the characteristics of rapid hardening, pseudo-plasticity, flowability and anti washout ability and enhance the cost efficiency of backfill material. Through the test of optimal mixing ratio of rapid hardening, evaluation of optimal mixing ratio of backfill material was conducted. As a result, required performance as well as cost efficiency could be achieved by adjusting plasticizer even in case of increasing W/M of the paste of rapid hardening to 100%.

Engineering Characteristics Assessment of Rapid Set Controlled Low Strength Material for Sewer Pipe Using Excavated Soil (굴착토를 활용한 속경성 유동성 채움재의 공학적 특성 평가)

  • Kim, Young-Wook;Lee, Bong-Chun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.450-457
    • /
    • 2020
  • In this study, engineering characteristics such as flowability, segregation and compressive strength by age to derive fast hardening material mixing proportion using excavated soil. And based on optimal mixing proportion, field simulation experiment conducted in laboratory to examine the effectiveness of the method such as kelly ball drop test and soil penetration test for reviewing the following process. As as a result of evaluation, in case of kelly ball drop test and soil penetration test were securing the following process initiation time 3 hours after place CLSM. As results of these assessments, kelly ball drop test and soil penetration test were applicable for revewing following process in construction field besides unconfined compressive strength method.

Design of Replacement Method on Anti-freeze Process of L Type Retaining Wells (L형 옹벽의 동상대책에 있어서 치환공법의 설계)

  • Rui, Da-Hu;Kim, Young-Su;Suzuki, Teruyuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.19-27
    • /
    • 2009
  • In order to investigate anti-freeze process of precast concrete L-type retaining walls in cold regions, test walls were installed in the campus of Kitami Institute of Technology (KIT, Hokkaido, Japan). The wall consists of following three sections, i) back filled with frost susceptible clay soil, ii) using thermal insulation material, and back filled with frost susceptible soil, iii) back filled with frost-unsusceptible soil. The freezing front distribution and ground temperature within the backfill were observed and deflections of the walls were measured over three freeze-thaw seasons. Some understanding of the mechanisms of the build-up of frost heave pressure was gained, and the effectiveness of replacement method was observed. A simulation was performed to predict the shape of the freezing front in the backfill behind L-type walls with various cross sections. These findings were employed to propose a method for determining the appropriate zone to be replaced with frost unsusceptible backfill material in cold regions.

Effect of Anti-washout Admixture Implementation on Backfill Aggregates on Underwater Structures (수중 구조물 골재 속채움 시 수중 불분리성 혼화제의 적용 효과)

  • Kim, Ukgie;Choi, Changho;Park, Bonggeun;Li, Zhuang;Cho, Samdeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.59-67
    • /
    • 2014
  • With increasing underwater structure construction, there is high interest in offshore foundation and underwater grout and various study has been done in this area. For grout materials constructed underwater, it may be washed away by water or easily disturbed and material separation phenomenon during curing period always happens. As a result, it is difficult to ensure construction quality and this has a significant influence on the design strength of structure. In this study, to understand application effects of anti-washout admixture for the preplaced construction method, where grout is injected in monopile after filled with aggregates, laboratory tests on bleeding and compressive strength of anti-washout admixture were performed under various test conditions varying size of aggregate, water and cement ratio and admixture, and test results were compared and evaluated.

Finite Element Analysis on Reinforced Concrete Filled PHC Pile with Ring Type Composite Shear Connectors (링형 합성 전단연결재를 적용한 철근 콘크리트 충전 PHC말뚝의 유한요소해석)

  • Kim, Jeong-Hoi;Lee, Doo-Sung;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.249-257
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that make up for the defects of PHC piles. CFP (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) piles developed in this study increases the compressive stress through enlarged cross section by rearranging composite shear connectors and filling the hollow part of PHC pile with concrete. And it improved shear and bending performance placing the rebar (H13-8ea) within the PHC pile and the hollow part of PHC pile of rebar (H19-8ea). In addition, the composite shear connectors were placed for the composite behavior between PHC pile and filled concrete. Placing Rebars (H13-8ea) of PHC pile into composite shear connector holes are sleeve-type mechanical coupling method that filling the concrete to the gap of the two members. Nonlinear finite element analyzes were performed to verify the performance of shear and bending moments and it deduced the spacing of the composite shear connectors. Through a various interpretation of CFP piles, it's proved that the CFP pile can increase the shear and bending stiffness of the PHC pile effectively. Therefore, this can be utilized usefully on the construction sites.

Experimental Study on Consolidation and Bearing Capacity Characteristics of Marine Large Pack Pile (해상 대구경 팩 말뚝 공법의 압밀 및 지지력 특성에 관한 실험적 연구)

  • Lee Sang-Ik;Park Wong-Won;Ihm Chul-Woong;Kim Il-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.197-205
    • /
    • 2005
  • This paper introduces a new method of improvement for marine soft ground, MLPP (Marine large Pack Pile). The MLPP is a reinforcement technique far the conventional SCP or GCP piles by confining them with geotextile pack. A pilot project at Busan New Port site and laboratory model tests were carried out to investigate the settlement reduction and bearing capacity enhancement effect of pack pile. The results of field and laboratory tests show that MLPP method can be a safe and economic alternative method for SCP and GCP.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.