최근 네트워크 기술 동향에 있어서 이른바 핫 이슈 중 하나인 소프트웨어 정의 네트워킹(SDN, Software-Defined Networking)은 바야흐로 데이터센터, 기업, 캠퍼스 등의 근거리 데이터 네트워크(LAN, Local Area Network) 환경을 넘어서 통신망 사업자(캐리어)와 서비스 제공자를 통해 원거리 데이터 네트워크 (WAN, Wide Area Network)로 진화하고 있다. 본고에서는 종단간 SDN 프로덕션 서비스를 위한 소프트웨어 정의 원거리 네트워크(SD-WAN, Software-Defined WAN)의 개요 및 적용 사례를 소개하고, SD-WAN의 핵심 서비스 기술로 인식되고 있는 네트워크 최적화, 가상화, 자동화, SDX(Software-Defined Exchange) 등의 요소 기술과 연구 동향을 알아본다.
KIPS Transactions on Software and Data Engineering
/
v.6
no.7
/
pp.337-352
/
2017
Clone-and-own reuse is an approach to creating new software variants by copying and modifying existing software products. A family of legacy software products developed by clone-and-own reuse often requires high maintenance cost and tends to be error-prone due to patch-ups without refactoring and structural degradation. To overcome these problems, many organizations that have used clone-and-own reuse now want to migrate their legacy products to software product line (SPL) for more systematic reuse and management of software asset. However, with most of existing methods, variation points are embedded directly into design and code rather than modeled and managed separately; variation points are not created ("engineered") systematically based on a variability model. This approach causes the following problems: it is difficult to understand the relationships between variation points, thus it is hard to maintain such code and the asset tends to become error-prone as it evolves. Also, when SPL evolves, design/code assets tend to be modified directly in an ad-hoc manner rather than engineered systematically with appropriate refactoring. To address these problems, we propose a feature-oriented method for extracting a SPL asset from a family of legacy applications. With the approach, we identify and model variation points and their relationships in a feature model separate from implementation, and then extract and manage a SPL asset from legacy applications based on the feature model. We have applied the method to a family of legacy Notepad++ products and demonstrated the feasibility of the method.
Aspect Oriented Programming(AOP) is a relatively new programming paradigm and has properties that other programming paradigms don't have. This new programming paradigm provides new modularization of software systems by cross-cutting concerns. In this paper, we propose a regression test method for program evolution by AOP. By using JoinPoint, we can catch a pointcut-name which makes it possible to test the incorrect pointcut strength fault and the incorrect aspect precedence fault. Through extending proof rules to aspect, we can recognize failures to establish expected postconditions faults. We can also trace variables using set() and get() pointcut and test failures to preserve state invariant fault. Using control flow graph, we can test incorrect changes in control dependencies faults. In order to show the correctness of our proposed method, channel management system is implemented and tested by using proposed methods.
국내 세무∙회계 솔루션업계의 독보적인 리더, 더존디지털웨어. 10여년 전 국내 최초로 세무조정에 대한 전산화를 이루며 업계 부동의 1위자리를 확보하고 있는 더존디지털웨어가 토털 소프트웨어기업으로 진화하기 위해 기어를 한껏 올렸다. 제2의 도약을 향한 더존디지털웨어의힘찬날개짓을유수형대표를만나들어본다.
Evolutionary artificial neural networks (EANNs) are towards the near optimal ANN using the global search of evolutionary instead of trial-and-error process. However, many real-world problems are too hard to be solved by only one ANN. Recently there has been plenty of interest on combining ANNs in the last generation to improve the performance and reliability. This paper proposes a new approach of constructing multiple ANNs which complement each other by speciation. Also, we develop a multiple ANN to combine the results in abstract, rank, and measurement levels. The experimental results on Australian credit approval data from UCI benchmark data set have shown that combining of the speciated EANNs have better recognition ability than EANNs which are not speciated, and the average error rate of 0.105 proves the superiority of the proposed EANNs.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.980-982
/
2013
본 논문에서는 SNS기반의 능동적 디펜스 게임 개발을 제안한다. 제안하는 게임은 기존의 모든 사용자가 콘텐츠를 이용할 뿐 차별성 없는 수용적 시스템과 다르게 하우징 시스템을 도입하여 사용자가 직접 콘텐츠를 배치하고, 다른 사용자의 콘텐츠 공략이 가능한 능동적인 형태이다. 이를 통해 기존의 디펜스 게임이 주는 게임성을 유지한 채 보다 진화된 형태로서 사용자들에게 새로운 시스템을 보여주고 신선한 자극을 줄 것으로 기대한다.
There is much selective confliction in nature where selfish and rational individuals exists. Iterated Prisoner's Dilemma (IPD) game deals with this problem, and has been used to study on the evolution of cooperation in social, economic and biological systems. So far, there has been much work about the relationship of the number of players and cooperation, strategy learning as a machine learning and the effect of payoff functions to cooperation. In this paper, We attempt to investigate the cooperative coalition size according to payoff functions, and observe the relationship of localization and the evolution of cooperation in NIPD (N-player IPD) game. Experimental results indicate that cooperative coalition size increases as the gradient of the payoff function for cooperation becomes steeper than that of defector's payoff function, or as the minimum coalition size gets smaller, Moreover, the smaller the neighborhood of interaction is, the higher the cooperative coalition emerges through the evolution of population.
In this paper, we investigate the use of fuzzy rules for efficient intrusion detection. We use evolutionary algorithm to optimize the set of fuzzy rules for intrusion detection by constructing fuzzy decision trees. For efficient execution of evolutionary algorithm we use supervised clustering to generate an initial set of membership functions for fuzzy rules. In our method both performance and complexity of fuzzy rules (or fuzzy decision trees) are taken into account in fitness evaluation. We also use evaluation with data partition, membership degree caching and zero-pruning to reduce time for construction and evaluation of fuzzy decision trees. For performance evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that our method outperformed the existing methods. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.
중대한 산업용 소프트웨어가 동작하는 공유된 객체지향 데이터베이스를 안전하게 변경하기 위해서는, 그 공유 데이터베이스를 변경할 동안 데이터베이스 위에서 작동하는 기존의 응용 프로그램이 지속적으로 작동되어야 한다. 데이터베이스 변경을 필요로 하는 새로운 요구사항은 새 응용 프로그램의 추가, 기존 응용 프로그램의 기능 확장, 초기 디자인 에러 수정 등으로 인하여 발생할 수 있다. 우리는 한 사람의 사용자가 다른 사용자에게 악영향을 주지 않고 데이터베이스 스키마를 변경할 수 있게 하여 이 문제를 해결하는 투명한 스키마 진화(TSE: Transparent Schema Evolution) 방법론을 소개한다. 이 방법론은 기존의 스키마를 직접 변경하는 대신 스키마 변경 연산의 의미를 반영하는 데이터베이스 큐를 공유 객체지향 데이터베이스 상에 생성하여 투명한 진화를 달성한다. 데이터베이스의 용량을 증가시키지 못하는 뷰 메카니즘의 한계를 극복하기 위하여 이 방법론은 데이터베이스 용량 증가 연산에 대하여 다음의 새 단계로 정렬된다. (1) 기저의 베이스 스키마는 데이터베이스 용량 증가를 위해 물리적으로 변호한다. (2) 데이터베이스 변경의 의미를 달성하는 목표 뷰가 위의 변화된 베이스 스키마로부터 생성된다. (3) 변화 이전의 베이스 스키마는 데이터베이스 뷰로서 재 구축된다. 이로써 기존의 다른 사용자가 정의한 데이터 인터페이스가 보존된다. 우리는 객체-지향 뷰 기술을 이용하여 스키마 변화 연산을 구현함으로써 TSE 방법론의 구현가능성(feasibility)을 확인하였다. 표준적인 객체-지향 뷰 모델이 정의되고 상용 객체-지향 데이터베이스인 잼스톤(Gemstone) 위에 구현되었다. 그 뷰 모델은 갱신 의미(semantic) 정의를 그 뷰가 베이스 스키마의 갱신 의미를 보존하도록 정의하였다. 그러한 뷰는 사용자가 그들이 실제로는 베이스 스키마가 아니라 뷰에서 작업하고 있다는 사실을 모르게 하기 위하여 TSE에서 필요하다.
This paper presents the implementation of libraries of hardware modules for genetic algorithm using VHDL. Evolvable hardware refers to hardware that can change its architecture and behavior dynamically and autonomously by interacting with its environment. So, it is especially suited to applications where no hardware specifications can be given in advance. Evolvable hardware is based on the idea of combining reconfigurable hardware device with evolutionary computation, such as genetic algorithm. Because of parallel, no function call overhead and pipelining, a hardware genetic algorithm give speedup over a software genetic algorithm. This paper suggests the hardware genetic algorithm for evolvable embedded system chip. That includes simulation results and analysis for several fitness functions. It can be seen that our design works well for the three examples.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.