
레거시 어플리케이션 제품군으로부터 제품라인 자산을 추출하는 휘처 기반의 방법 337

A Feature-Oriented Method for Extracting a Product Line

Asset from a Family of Legacy Applications

Hyesun Lee†⋅Kang Bok Lee††

ABSTRACT

Clone-and-own reuse is an approach to creating new software variants by copying and modifying existing software products. A family

of legacy software products developed by clone-and-own reuse often requires high maintenance cost and tends to be error-prone due to

patch-ups without refactoring and structural degradation. To overcome these problems, many organizations that have used clone-and-own

reuse now want to migrate their legacy products to software product line (SPL) for more systematic reuse and management of software

asset. However, with most of existing methods, variation points are embedded directly into design and code rather than modeled and

managed separately; variation points are not created (“engineered”) systematically based on a variability model. This approach causes the

following problems: it is difficult to understand the relationships between variation points, thus it is hard to maintain such code and the

asset tends to become error-prone as it evolves. Also, when SPL evolves, design/code assets tend to be modified directly in an ad-hoc

manner rather than engineered systematically with appropriate refactoring. To address these problems, we propose a feature-oriented

method for extracting a SPL asset from a family of legacy applications. With the approach, we identify and model variation points and

their relationships in a feature model separate from implementation, and then extract and manage a SPL asset from legacy applications

based on the feature model. We have applied the method to a family of legacy Notepad++ products and demonstrated the feasibility of the

method.

Keywords : Extractive Approach to Software Product Line Engineering, Feature-Orientation, Legacy Applications,

Copy-and-Own Reuse

레거시 어플리케이션 제품군으로부터 제품라인 자산을

추출하는 휘처 기반의 방법

이 혜 선†⋅이 강 복††

요 약

복제 및 소유(Clone-and-own) 재사용은 기존의 소프트웨어 제품을 복사하고 수정하여 새로운 소프트웨어를 개발하는 방법이다. 복제 및 소

유 재사용으로 개발된 레거시 소프트웨어 제품군은 일반적으로 리팩토링 없이 패치 업 되고 구조적으로 저하되기 때문에 높은 유지보수 비용

을 필요로 하고 오류가 발생하기 쉬운 경향이 있다. 기존에 복제 및 소유 재사용 방법을 사용했던 많은 회사들이 이러한 문제를 해결하고 소프

트웨어 자산을 더 체계적으로 재사용하고 관리하기 위하여 레거시 제품들을 소프트웨어 제품라인으로 전환하려고 하고 있다. 하지만 대부분의

기존 방법들은 가변점(Variation points)을 디자인과 코드로부터 분리해서 모델링하고 관리하지 않고 디자인과 코드에 바로 임베드시킨다. 즉,

가변점이 가변성 모델을 기반으로 체계적으로 생성되고 관리되지 않는다. 이러한 기존 방법들은 다음의 문제를 야기한다. 기존 방법에서는 가

변점 간 관계를 이해하기가 어렵기 때문에 가변점이 임베드 된 코드를 유지보수하기가 어렵고 코드가 변경 및 진화될 때 오류가 생기기 쉽다.

또한 소프트웨어 제품라인이 진화할 때 디자인/코드 자산이 적합한 리팩토링을 적용하여 체계적으로 변경되는 것이 아니라, 애드 혹(Ad-hoc)

방식으로 직접적으로 변경되는 경향이 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 레거시 어플리케이션 제품군으로부터 소프트웨어

제품라인 자산을 구축하는 휘처 기반의 방법을 제안한다. 제안하는 방법에서는 가변점과 가변점 간 관계를 식별하고 이들을 구현으로부터 분리

하여 휘처 모델로 모델링한다. 그리고 휘처 모델을 기반으로 레거시 어플리케이션으로부터 소프트웨어 제품라인 자산을 추출하고 관리한다. 제

안하는 방법을 레거시 Notepad++ 제품군에 적용을 하여 방법의 실행가능성을 검증하였다.

키워드 : 소프트웨어 제품라인 공학에 대한 추출식 접근법, 휘처 기반, 레거시 어플리케이션, 복제 및 소유 재사용

KIPS Tr. Software and Data Eng.

Vol.6, No.7 pp.337~352 pISSN: 2287-5905

1)

※ This work was supported by ETRI R&D Program grant funded by the
Korea Government (MSIP) [17ZH1310, Development of infra-less PDR
based connected helmet system for augmented cognition], and supported
by the Fire Fighting Safety & 119 Rescue Technology Research and
Development Program funded by the Ministry of Public Safety and
Security [16AC3200, Development Smart Helnet for Fireman].

†정 회 원 :한국전자통신연구원 초연결통신연구소 IoT연구본부
††비 회 원 :한국전자통신연구원 초연결통신연구소 IoT연구본부

Manuscript Received : April 11, 2017
Accepted : April 29, 2017

* Corresponding Author : Hyesun Lee(hyesun.lee@etri.re.kr)

https://doi.org/10.3745/KTSDE.2017.6.7.337

338 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제7호(2017. 7)

1. Introduction

When software organizations develop new software

products similar to the ones that they had developed before,

they typically use clone-and-own reuse. Clone-and-own-

reuse [1] is an approach to creating new software variants

by copying and modifying existing software products. With

the approach, each newly created software variant assumes

its own maintenance trajectory separated from that of

the existing products. Many organizations still use this

approach when creating products with new features.

(Organizations such as Nokia [2], Danfoss Drives [3], and

Hitach [4] have mentioned in publications that their earlier

products had been developed in this way.)

The clone-and-own reuse often leads to a number of

software variants with duplicated code that need to be

maintained separately, thus the maintenance cost increases

at an alarming rate [4]. Moreover, software developed using

the clone-and-own approach tends to be error-prone

because of complex “invisible” dependencies created at the

code level [5]. To overcome these difficulties and keep a

family of products under control, many organizations that

have used clone- and-own reuse now want to migrate their

legacy products to software product line (SPL).

Practitioners and researchers [2-15] have published their

experiences of extracting a SPL asset1) from a family of

legacy products developed using clone-and-own reuse.

However, most of these publications described organization

or domain specific experiences rather than introducing a

systematic method that can be repeated in different

organizational or domain contexts.

Some papers proposed systematic methods for

identifying variation points and variants between legacy

software variants and reengineering the legacy variants to

a reusable asset. For example, Bayer and others ([6-7])

used a product map and a decision table to identify

variation points and variants, and then they reengineered

legacy design/code and embedded the variation points/

variants into an asset using a wrapping scheme ([6]) and a

conditional compilation technique. Alves and others ([8-10])

identified variation points in terms of aspects and then used

aspect-oriented refactoring to embed the aspects into code.

These methods, however, did not model variation points

separate from the code. This may cause the following

problems: First, relationships between variation points are

implicit in the design/code, thus it is difficult to understand

the relationships between the variation points. Therefore, it

1) A SPL asset includes requirement specification, design, code, test cases
and any other artifact used to develop and maintain SPL

is hard to maintain such code, and the code tends to

become error-prone as it evolves. Also, when a SPL

evolves, design/code assets are directly changed and it is

difficult to analyze and understand “the evolution of

variation points/variants”; evolution is “silent.” Without

understanding the “trends of evolution,” asset management

tends to be reactive rather than proactive thus losing an

opportunity to reflect anticipated changes to the asset while

refactoring. We need to create a variability model separate

from the SPL asset when we extract an asset from legacy

products, analyze the variability model, and then

systematically refactor and embed variation points into the

asset based on the variability model.

If we have a variability model separate from im-

plementation, however, we need to manage and maintain

traceability and consistency between the variability model

and the design/code; when the variability model is changed,

we should be able to trace to the corresponding variation

points and variants embedded in the asset easily. Also, we

should be able to analyze the consistency between the vari-

ability model and the variation points/variants embedded in

the asset code when a new variation point or a variant is

added, or existing ones are changed, and vice versa.

To address these issues, we introduce a feature-oriented

approach to SPL in this paper. We used legacy products of

Notepad++ [16] to illustrate the concept of our method. It is

a small example but we believe that it has enough

complexity to expose the key aspects of our method and

demonstrate the feasibility.

A family of legacy Notepad++ products is briefly

introduced in section 2. Then, we introduce the underlying

concepts of our method in section 3, followed in section 4-6

by a discussion of our method with illustrative examples

using the legacy Notepad++ products. We evaluate our

method in section 7. Section 8 includes related works and

then we conclude this paper in section 9 with a discussion

and future works.

2. Background on NOTEPAD++

Notepad++ [16] is a popular open-source code editor

written in C++ language. The primary and basic services of

Notepad++ are file management (e.g., file open, save),

source code editing (e.g., code copy/paste, indentation), and

editing-view control (e.g., zoom in/out editing-view,

creating new editing-view). Notepad++ supports editing of

programs in various programming languages (e.g., C/C++,

Java, XML) and encoding standards (e.g., ANSI, UTF-8,

UCS-2).

레거시 어플리케이션 제품군으로부터 제품라인 자산을 추출하는 휘처 기반의 방법 339

The development history of Notepad++ shows a single

evolutionary path. Since Notepad++ was first released in

November 2003, new features (such as bookmark, user-

defined language support, GUI configuration, etc.) have

been added , and about 100 versions of Notepad++ have

been released until now.

We identified the following problems in the long

evolutionary path of Notepad++: Through the evolution, a

number of features have been added, so the current version

of Notepad++ has hundreds of features including some

features (e.g., Google/Wikipedia search) that are helpful but

not necessary for source code editing. Some customers may

use all features, but others may want only primary features

necessary for source code editing. Also, some features

requested by the users with specific needs caused

performance degradation, and there have been complaints at

the user forum [17]. For example, there was a request for

counting exact characters in UTF-8 continuously and this

feature was added to version 5.7. However, this feature

caused a major performance degradation; The version 5.7 of

Notepad++ requires about 2 seconds to complete any action

on 30MB file when in UTF-8.

The feature-oriented extractive approach to product line

engineering can address these problems; the features that

are helpful but not necessary for source code editing can

optionally be included in a product according to customer

needs.

A set of legacy Notepad++ versions is used in section 5

and 6 to illustrate the method, and the evaluation results

will be discussed in section 7. We will introduce underlying

concepts of the method in the following section.

3. Underlying Concepts

In this section, we discuss the rationales behind our

approach.

Since feature modeling [18] was introduced in 1990, the

concept of “feature” has been used in many researches/

practices in software product line engineering as the unit of:

capability/service that is delivered to customers; parameter-

ization for asset components; development and delivery to

customers; product configuration and configuration man-

agement; and product management for targeting specific

market segments [19]. Therefore, feature model can be used

as a central model for representing and managing varia-

bility and for extracting and maintaining a SPL asset; that

is, variability of a family of legacy products is identified in

terms of features, relationships between the features are

modeled in a feature model, the legacy products are re-

engineered to SPL assets with embedded variation points

using optional and alternative features of the feature model,

and then the assets are configure and managed systemati-

cally based on the feature model.

In this paper, we propose a feature-oriented extractive

method that uses a feature model as the central model for

variability management. The underlying concepts of the

approach are as follows (We assume that each of the

legacy products has been developed using the clone-

and-own reuse and managed like many single products, and

variation points are not embedded in the products.):

(1) Separation of a variability model from its

implementation. The problems of existing approaches are

due to direct embedment of variation points into design and

code without a separate and concurrently managed

variability model as discussed in section 1. To overcome

these problems, we create a variability model (as a feature

model) separate from its implementation.

Fig. 1. Separation of a Variability Model from Asset Code

In our approach, we compare legacy products to

understand the differences and extract variants and

associated variable features (① in Fig. 1). We consider

differences as variants, and create a variation point for each

variant and assign a logical expression with features as

operands; we call this expression a variation point

specification (② in Fig. 1). If a feature selection made for a

product satisfies the specification of the variation point, the

variant associated with it is included in a product.

Then we analyze if there are any program dependencies

between variants. For any two variants that have program

dependencies, we define features relationships for the

features used in the variation point specifications of the

related variants (③ in Fig. 1). The feature model (created

by ④ in Fig. 1) is used to embed variation points and

variants into the asset code (⑤ in Fig. 2) using the

variability mechanism (e.g., macro processing) provided by

340 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제7호(2017. 7)

the programming language; the variation points defined in

step 2 will be refined in steps 5 to 7 based on the feature

model.

(2) Embedment of variation points and variants in

the asset that is consistent with the feature model.

We often need to reengineer the legacy code to turn it

into reusable asset that is structurally and operationally

consistent with and also traceable to and from the feature

model (See ⑥ and ⑦ in Fig. 2.). That is, the structural

relationships between variants (also between associated

variation points) of the asset should be consistent with

structural relationships (i.e., composed-of and generalization-

specialization) between features of the feature model.

Also, call dependencies between variants should be

consistent with configuration dependencies (i.e., require

and exclude) between features of the feature model. For

example, in Fig. 2, a structural relationship between the

variation points/variants (mapped to f1 and f11) of the

asset code (in the figure on the right) should be

consistent with a composed-of relationship between f1

and f11 of the feature model (in the figure on the left).

Fig. 2. Embedment of Variation Points/Variants in the Asset

that is Consistent with the Feature Model

This feature-oriented extractive approach has the

following advantages:

� As relationships between variable features are

explicitly identified and modeled, we can easily

understand the relationships between the features and

associated variation points and variants embedded in

the asset, and, therefore, can more systematically

develop and maintain the asset than otherwise.

� As the structure of the asset is consistent with that

of the feature model, it is easy to trace to features

embedded as variation points in the asset. Also, it is

easy to predict impacts of feature changes; when a

feature changes, we can identify the asset code that

may have to be modified together by tracing to all

features (and their implementations) that are related

with the changed feature.

� The feature model can be used as a product

configuration model. Configuration tools can enforce

configuration rules following feature dependencies by,

for example, pruning the features that can not be

selected along with the features that have already

been selected because of “exclude” relationships

between them.

Based on these ideas, the method processes were defined,

which are outlined and explained in the following section.

4. Feature-oriented Method: Strategies of the

Method

In this section, we first discuss the challenges addressed

in this research, and describe the strategies we adopted to

address the challenges. Then we introduce our method with

a detailed explanation.

To apply the concepts introduced in section 3, the

challenges that needed to addressed are as follows:

� (1) To completely identify variation points and

variants of a family of legacy products, we need to

compare every combination of the products, but the

number of comparisons will increase exponentially as

the number of legacy products increases, which makes

our method not scalable.

� (2) As features are used to insert variation points in

the asset components extracted from a family of

legacy programs, we need to determine the right level

of granularity of features that correspond well to

differences between legacy programs.

� (3) Structural relationships and configuration depend-

encies between features are hidden in the legacy pro-

grams rather than explicitly captured in a document.

Also, some features could be omitted or scattered in

the implementation, which makes identifying relation-

ships between features difficult.

� (4) Checking consistency between variation points of

an asset and the feature model is a time consuming

and costly task. (For example, automotive software

assets usually have thousands of features and more

than 10 million lines of code [20]; a tremendous

amount of time and effort are required for consistency

checking.)

To address the challenge (1), we have decided to make

pair-wise comparison along the clone-and-own path(s)

레거시 어플리케이션 제품군으로부터 제품라인 자산을 추출하는 휘처 기반의 방법 341

Fig. 4. An Overview of the Method

(Fig. 3) of the family of legacy products. We can identify all

additions, deletions, and changes, i.e., feature variations

with this approach. The rationale of this approach is as

follows: If the program B is directly derived from A, and C

is directly derived from B, then differences (i.e., added/

deleted code segments) between A and C are a subset of

differences between A and B and those of B and C. Also, if

the program F and G are directly derived from E, then

differences between F and G are a subset of differences

between E and F and those between E and G.

Fig. 3. An Example of Clone-and-Own Paths

Fig. 3 shows an example of clone-and-own path of seven

legacy programs, and an arrow between programs shows a

clone-and-own relationship (e.g., the arrow from B to C

indicates that C is directly derived from B.). Each pair of

programs that are adjacent to each other in a clone-and-

own path is analyzed in sequence, and we need (n-1)

comparisons for the n number of legacy programs for a

complete analysis. For the example in Fig. 3, we need to

analyze the following six pairs in order: A-B, B-C, C-D,

A-E, E-F, and E-G for a complete analysis.

The proposed approach could significantly reduce the

number of comparisons from exponential to linear. For the

SPL with a large number of legacy programs, a complete

analysis may be too costly. Of these pairs, we may choose

to select pairs close to the end of each path. Those features

that are not present in the recent products may no longer

be useful; here, we need domain experts’ opinion.

To address the challenges (2) and (3), we propose a

systematic method and rules for constructing a feature

model bottom-up by comparing the legacy program code.

Existing researches in feature-oriented product line

engineering typically construct a feature model top-down

from requirements. However, features identified by a

top-down approach usually capture functionalities/services

in abstraction and, when an abstract feature is mapped to

code, they tend to cut across many code units (i.e., module,

component). With a bottom-up approach, we can identify

more concrete low level features (than a top-down

approach) each of which corresponds well to a variant.

Moreover, with the bottom-up approach, we could identify

variable features and feature relationships that are not

explicit in documentation.

To address the challenge (4), we defined rules for

checking consistency between variation points embedded in

the asset and the feature model (The rules will be explained

in section 6.3.). These rules can be checked using a CASE

tool, reducing effort for the consistency checking sub-

stantially.

342 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제7호(2017. 7)

Based on these strategies, we defined a method consisting

of two engineering processes that can proceed iteratively

and incrementally (as shown in Fig. 4): analyzing the

family of legacy programs and constructing a feature model

bottom-up; and reengineering the legacy programs and

creating an asset that are consistent with the feature model.

Note that in this paper we focus on variable (i.e., optional

or alternative) features and their relationships rather than

mandatory features2).

Details of the processes and artifacts from each activity

of the processes are discussed in section 5 and 6.

5. Feature-oriented Method: Legacy Program

Analysis and Feature Modeling

The first process (the upper part of Fig. 4) consists of

the steps for creating a feature model from a family of

legacy programs as shown in Fig 1 (The circled numbers in

Fig. 4 correspond to the circled numbers in Figs. 1 and 2.).

These steps are semi-automatic, and the steps 1 through 3

of the process are performed iteratively and incrementally

following the clone-and-own path(s) of a family of legacy

programs.

Each step of the process is explained in the following

subsections.

5.1 Analyzing Variants and Variation Points

To identify variable features and their relationships,

we first identify differences between legacy program

code and determine which differences are related to

which features.

We use an abstract syntax tree (AST) based program

comparison [21] to automatically identify code changes

between two legacy programs. With the AST-based

comparison, we can compare structures of two programs

and get more precise results than with a lexical comparison.

(A lexical comparison identifies code changes at the lexical

level ignoring high-level design changes, so it often

provides results that are logically incorrect.). In addition, we

can also identify program dependencies from a reversed

AST, which are used in the next step.

After identifying code differences, we use domain

knowledge to determine which code changes are related to

which features (Note that this is not an automatic task). If

a code change is related to addition of a new feature(s) or

removal of an existing feature(s), we consider the changed

2) Identifying mandatory features and their relationships is rather simple
and straightforward. They can be identified from classes/methods that
are common among the legacy programs.

code as a variant and name the variable feature(s). A

logical expression with these feature(s) as operands can

specify a variation point to the variant (See Fig. 1 for the

relationship between variation points, variants, and

features.). We represent the relationship between the code

change (i.e., variant) and the variation point using variation-

point-and-variant-mapping. (We call this mapping as

“VVM” in short.) We define VVM as follows.

Definition 1. Variant (or Code Variant):

- A variant is a code segment that is different between

ASTs of two legacy programs. The unit of variant is one of

file, class3), method, statement, or variable.

Definition 2. Variation Point:

- A variation point is specified by a logical expression

with features as operands. Logical value of a feature is true

if it is selected and false otherwise.

Definition 3. VVM (Mvp-v):

- Let VP be a set of variation points and V be a set of

variants.

- A set of mappings between variation points and

variants, Mvp-v, is defined as a binary relation on VP×V.

- For any a variation point vp and variant v such that

vp ∈ VP and v ∈ V, if there exists a set such that {vp, v}

∈ Mvp-v, this indicates that v is included in a program

only if vp is satisfied.

Fig. 5. An Example of Code Change

We create VVMs based on the domain knowledge. For

example, Fig 5 shows some code of program A, B, C, and

D from Fig. 3. In the example, when program A and B are

compared, the variant v0 is identified, and based on domain

knowledge that “v0 was added to the program B because of

the newly added feature f0”, we can define {f0, v0} ∈

Mvp-v. Also, for another example, when we compared

program C and D, the variant v1 is identified, and it is

found that “v1 is not in program D because of the deleted

feature f2” then we can define {f2, v1} ∈ Mvp-v.

3) In C++ language, class is defined as data structure using the keywords:
class, struct, and union.

레거시 어플리케이션 제품군으로부터 제품라인 자산을 추출하는 휘처 기반의 방법 343

As steps 1 through 3 of the process (Fig. 4) are

iteratively performed, VVMs are also continuously refined.

For example, in Fig. 5, we have identified {f0, v0} ∈

Mvp-v before comparing program C and D. However, after

comparing program C and D, we identify that v0 (that was

previously added) was deleted. With the information of “v0

was added to the program B because of the newly added

feature f0” and “v0 was removed from the program D

because of the deleted feature f1” we identify that v0 exists

when both f0 and f1 are included in products and modify

VVMs accordingly; we refine {f0, v0} to {f0 ∧ f1, v0}.

The VVMs are used in the next step to identify the

types of feature variability and relationships between

variable features.

5.2 Identifying New Features and Feature Relationships

The purpose of this step is to identify the types of

feature variability and feature relationships from VVMs

defined in the previous step. The basic idea of identifying

feature relationships is that if two variants have a program

dependency (e.g., calls), then the features used in the

specifications of the respective variation points may have

relationships.

We first define three types of program dependency: com-

position, specialization, and operation dependency ; we clas-

sified the dependencies introduced in [22] into these three

types based on structural and operational characteristics.

These types of dependencies can be identified automatically

from ASTs created in the previous step.

Definition 4. Composition relationship between

variants:

- For any variants v1 and v2, we define a composition

relationship, which means that v2 is contained in (i.e., is a

member of) v1, if one of the following conditions is

satisfied:

- v1 is a file and v2 is a class, method, variable, or

statement defined or declared in v1.

- v1 is a class and v2 is a class, method or variable that

is a member of v1.

- v1 is a method and v2 is a set of contiguous

statements inside the body of v1.

- v1 is a statement and v2 is a variable used in v1.

Definition 5. Specialization relationship between

variants:

- For any variants v1 and v2, we define a specialization

relationship, which means that v1 is a specialization of v2,

if one of the following conditions is satisfied:

- v1 and v2 are classes and v1 inherits v2.

- v1 is a method that implements a virtual method v2.

Definition 6. Operation dependency between variants:

- For any variants v1 and v2, we define a operation

dependency, which means that v1 operationally depends on

v2, if one of the following conditions is satisfied:

- v2 is a file and v1 is a statement that includes v2.

- v2 is a class and v1 is a variable that is an instance of

v2.

- v2 is a method and v1 is a statement that calls v2.

- v2 is a variable and v1 is a statement that refers v2.

Then, we define the following seven heuristics for

identifying variable features and feature relationships: 1)

identifying optional features, 2) analyzing OR-expression on

features, 3) analyzing XOR-expression on features, 4)

analyzing AND-expression on features, 5) analyzing

composition relationships, 6) analyzing specialization

relationships, and 7) analyzing operation dependencies. In

this paper, we describe these rules informally and briefly

because of space limitation. Each rule is described below.

Rule 1. Identifying optional features: This is a basic

rule for identifying optional features from VVM.

- If there exists a set such that {f, v} ∈ Mvp-v, we

identify f as an optional feature.

- If there exists a set such that {¬ f, v} ∈ Mvp-v, we

identify f as an optional feature.

Fig. 6 shows a code change between programs 1 and 2

(of the family of legacy Notepad++ programs) and VVM.

By applying Rule 1, we define File Open History as an

optional feature.

Fig. 6. An Example of Rule1

Rule 2. Analyzing OR-expression on features: Some

variants may be mapped to OR (i.e., ∨) expression on

features. OR-expression on features, e.g., f1 ∨ f2 (where f1

and f2 are features), is regarded as a new feature f3

representing the expression, i.e., f3 ≡ f1 ∨ f2 (We name f3

with domain experts). When we transform the expression

to a feature model, we define f1 and f2 as optional features

and also define a composed-of relationship between f3 and

(f1, f2): f3 is composed of f1 and f2. (We apply a similar

scheme to multiple-OR-expression on features, e.g., f1 ∨ f2

∨ … ∨ fn, and regard it as a new feature representing the

expression.)

344 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제7호(2017. 7)

Fig. 7 shows code changes between two Notepad++

programs and VVMs. By applying Rule 2, we define an

optional feature XML-based Configuration as (GUIC ∨

XMLL ∨ FOH), which are all optional, and also define a

composed-of relationship: XML Configuration is composed-

of GUIC, XMLL and FOH (See the feature model in Fig. 7).

Fig. 7. An Example of Rule2

Rule 3. Analyzing XOR-expression on features: We

analyze variants mapped to XOR (i.e., ⊕) expression on

features in the similar way as Rule 2. XOR-expression on

features, e.g., f1 ⊕ f2 (where f1 and f2 are features), is

regarded as a new feature f3 representing the expression,

i.e., f3 ≡ f1 ⊕ f2. When we transform the expression to a

feature model, we define f1 and f2 as alternative features,

and also define a composed-of relationship between f3 and

(f1, f2): f3 is composed of f1 and f2. Fig. 8 shows an

example of Rule 3. (We apply a similar scheme to multiple-

XOR-expression on features.)

Fig. 8. An Example of Rule3

Rule 4. Analyzing AND-expression on features: Some

variants may be mapped to AND (i.e., ∧) expression on

features (e.g., f1 ∧ f2 where f1 and f2 are features). This

case could be seen using a simple Venn diagram in Fig 9.

In the Venn diagram, the overlapped part (2) indicates a set

of variants mapped to (f1 ∧ f2). Based on (1), (2), and (3),

we interpret (f1 ∧ f2) as follows (let (2) be a non-empty set):

- Case 1) If both (1) and (3) are empty sets, the

feature f1 and f2 are always selected together. Thus, we

define (f1 ∧ f2) as a new optional feature (e.g., f3) but

do not define f1 or f2 as optional features.

- Case 2) Else, if only (1) is an empty set, f1 alone cannot

be selected without f2. Thus, we define both f1 and f2 as

optional features and define a require dependency: f1

requires f2.

- Case 3) Else, if only (3) is an empty set, f2 cannot exist

without f1. Thus, we define both f1 and f2 as optional

features and define a require dependency: f2 requires f1.

- Case 4) Else, if both (1) and (3) are non-empty sets:

- Case 4.1) If both variants in (1) and (3) have any direct

or indirect4) program dependency (such as composition,

specialization, or operation dependency) on the variant(s) in

(2), this means that the features f1 and f2 are always

selected together (because both f1 and f2 require the

overlapped part). It is meaningless to define each of f1 and

f2 as optional, thus we define an optional feature, e.g., f3,

that is composed of f1 and f2.

- Case 4.2) Else, if any variant in (1) has direct or

indirect dependency on the variant(s) in (2), but not vice

versa, this indicates that (2) is required to implement f1.

Therefore, we define f1 and f2 as optional, and also

define a require dependency “f1 requires f2.”

- Case 4.3) Else, if any variant in (3) has direct or

indirect dependency on any variant(s) in (2), but not vice

versa, this means that (2) is required to implement f2.

Thus, we define f1 and f2 as optional, and also define a

require dependency “f2 requires f1.”

- Case 4.4) Else, (i.e., the variants in (1) and (3) do

not have any dependency on (2) directly or indirectly), f1

and f2 do not have any configuration relationships. (Note

that in this case (2) indicates that f1 interacts with f2

when both of them are included in a product, but this

does not mean that they have configuration dependency.)

We define f1 and f2 as independently configurable optional

features.

Fig. 9. An Abstraction of (f1 ∧ f2) and a Feature

Model for Each Case

We apply a similar scheme to (f1 ∧ ¬ f2). In this case

“f1 requires ¬ f2” is interpreted as “f1 excludes f2”.

4) If A has a dependency on B, and B has a dependency on C, then we
say that A has an indirect dependency on C.

레거시 어플리케이션 제품군으로부터 제품라인 자산을 추출하는 휘처 기반의 방법 345

Fig. 10. An Example of Rule5

Rule 5. Analyzing composition relationships between

variants: We may identify composed-of relationships

between features from the composition relationships between

variants. The Venn diagrams in (a) and (b) of Fig 10 show

composition relationships between variants mapped to

feature f1 and f2; the overlapped part indicates that the

variant mapped to f2 is contained in the variant mapped to

f1. If every variant mapped to f1 is directly or indirectly

contained in any variant mapped to f2 ((a) of Fig. 10), we

define a composed-of relationship: f1 is composed of f2.

Otherwise ((b) of Fig. 10), it is difficult to decide whether

a composed-of relationship exists between f1 and f2

automatically; we check if f2 is an optional feature and if

there is a composed-of relationship between f1 and f2 with

domain experts.

Rule 6. Analyzing specialization relationships between

variants: We consider the specialization dependency

between variants as a mechanism for implementing

generalization-specialization relationships between features.

(We call the generalization-specialization relationship as

“gen-spec relationship” in short.)

- For any features f1 and f2, if any variant mapped to

f1 directly/indirectly has specialization relationship with

the variant mapped to f2, but not vice versa, we define a

gen-spec relationship between f1 and f2.

Rule 7. Analyzing operation dependencies between

variants: If a variant, e.g., v1, has a direct or indirect

operation dependency on others, e.g., v2, this indicates

that v1 requires v2 for correct behavior. Therefore, the

operation dependency between variants imply a require

relationship between features mapped to them.

- For any features f1 and f2, if any variant mapped to

f1 directly/indirectly has an operation dependency on the

variants mapped to f2, but not vice versa, we identify a

require dependency: f1 requires f2.

- In the case where, features f1 and f2 are always

selected together, we define an optional feature, e.g., f3,

that is composed of f1 and f2 (We do not individually

define f1 and f2 as optional features.).

- For any features f1 and f2, if any variant mapped to

f1 has a direct/indirect operation dependency on the

variants mapped to (¬ f2), but not vice versa, we

identify a exclude dependency: f1 excludes f2.

Fig. 11. An Example of Rule7

For example, in Fig. 11, a variant mapped to a feature

Language Automatic Detection has an operation dependency

on a variant mapped to Syntax Highlight of INI File.

Applying Rule 7, we define a require dependency: Language

Automatic Detection requires Syntax Highlight of INI File.

For VVMs that have complex code inclusion conditions

that consist of multiple ∨, ⊕, ∧, and ¬ expressions on

features, we can apply more than one rules. For example,

if there exists a set such that {(f1∧ (f2 ∨ f3)), v} ∈

Mvp-v (where v is a variant and f1, f2, f3 are features),

we can apply Rule 2 and Rule 4 in sequence.

In addition to the proposed rules, we may analyze

features across the legacy programs to identify alternative

features and/or exclude dependencies between features.

For example, if only one from a set of features was

included in legacy programs, the set of features could be

alternatives.

The identified features and feature relationships are

validated by domain experts in the next step.

5.3 Refining and Checking Integrity of Feature Model

As steps 1 through 3 (of the method process in Fig 4)

are performed iteratively, we incorporate new features and

feature relationships into the feature model, and check the

logical integrity of the model. This step consists of two

activities: 1) removing redundant relationships and 2)

validating the features and feature relationships by domain

experts.

Activity (1) Removing redundant relationships: Any

relationships that can be deduced from others are

removed.

- Redundant composed-of: For any two features f1

and f2, if the relationships “f1 is composed of f2”, “f2 is

composed of f3”, and “f1 is composed of f3” are defined,

we remove “f1 is composed of f3” ((a) in Fig 12 shows

an example.). The same rule applies to gen-spec, require,

and exclude relationships.

346 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제7호(2017. 7)

- Composed-of and require: For any two features f1

and f2, if we have “f1 is composed of f2” and “f2

requires f1”, we remove “f2 requires f1.” Composed-of

implies require relationships between the composer and

the composed features. (An example is shown in (b) in

Fig. 12.)

- Gen/-spec and require: For any two features f1

and f2, if relationships “f1 is generalization of f2” and “f2

requires f1” were defined, we remove “f2 requires f1.”

Gen-spec implies require relationships between the

generalization and the specialization features.

- Composed-of and Gen-spec: For any features f1

and f2, if we have “f1 is generalization of f2” and “f1 is

composed of f2”, we let domain experts to decide the

correct relationship.

Fig. 12. An Example of Activity1

Activity (2) Validating the features and feature

relationships: The features and feature relationships we

identified are totally based on legacy implementations,

thus we should check/confirm their integrity at the

logical/conceptual level. The identified features and feature

relationships need to be analyzed by domain experts. Any

logically incorrect parts should be modified accordingly.

Also, feature configuration dependencies that are necessary

for any marketing reasons may be added by domain

experts.

In the Notepad++ example, we identified optional features

Language Automatic Detection and Syntax Highlight of INI

File, and a require dependency: Language Automatic

Detection requires Syntax Highlight of INI File (in Fig. 11)

from the legacy programs. However, the dependency is

logically incorrect; Language Automatic Detection is not

limited to any specific language and can be selected/operated

without Syntax Highlight of INI File. Therefore, we removed

the dependency and made these features independently

configurable.

5.4 Feature Modeling

After finishing steps 1 through 3 of the method

process in Fig 4, we have a set of validated features and

feature relationships, and these are “constraints” in

feature modeling. In this step, we construct a feature

model that satisfies these “constraints.”

First, we define a feature graph. A feature graph is a

labeled directed graph (F, Ec, Eg, Er) where F is a set of

features identified in the previous steps, and Ec, Eg, Er

⊆ (F × F) are directed edges such that if (f1, f2) ∈ Ec,

f1 is composed of f2; if (f1, f2) ∈ Eg, f1 is generalization

of f2; and if (f1, f2) ∈ Er, f1 requires f2.

We developed the algorithm as follows:

� 1. Initialize a feature graph with a mandatory node

“System.” Add all variable features to F of the model.

We now have a graph with disconnected nodes

(without edges).

� 2. Add edges to the graph, based on feature

relationships.

� For composed-of, gen-spec, and require relation-

ships between features, add edges connecting the

features to Ec, Eg, and Er, respectively.

� Add edges connecting the System node with the

features that do not have parents, to Er (because

System is composed of all features.)

� Note that as composed-of implies require relation-

ships between the composer and the composed fea-

tures, if a require dependency such as “f1 requires

f2” was defined, there is a possibility of a com-

posed-of relationship “f2 is composed of f1.”

Therefore, we will select a subset of require edges

and change them to composed-of edges to create a

feature tree that consists of all Ec and Eg edges

following the steps below.

� 3. For each node that do not have parent and that is

connected by only one of edges in Er, move the edge

from Er to Ec.

� 4. For each node that do not have a parent and that

is connected by more than one edges in Er, select one

of the edges and move it from Er to Ec. We need

domain experts’ opinion here. If feature description is

available, we can use the method introduced by She

et al. ([23]) to identify edges in Er that have high

possibility to become composed-of edges. Continue

this process until we find a sub-tree consisting of all

edges in Ec and Eg. The resulting sub-tree is a

feature model that satisfies the “constraints.”

� 5. Validate the feature model with domain experts.

The left part of Fig. 13 shows the initial feature graph

created after applying the algorithm steps 1 through 2,

and the right part shows the final feature graph (i.e., the

feature model for the asset) constructed after the

algorithm step 4.

레거시 어플리케이션 제품군으로부터 제품라인 자산을 추출하는 휘처 기반의 방법 347

Fig. 13. Initial Feature Graph on the Left and the Final

Feature Model on the Right

Now we have a feature model created through a

variability analysis of the legacy products. This feature

model is used in the next section to embed variation points

to the SPL asset.

6. Feature-oriented Method: Feature-Oriented

Product Line Reengineering

The purpose of this process is to engineer an asset

consistent with the feature model (constructed in the

previous process) in order to configure and manage the

asset systematically based on the feature model. There

are several techniques for inserting variation points to a

program such as conditional compilation, aspect-

orientation, etc. In our method, we use a conditional

compilation technique to produce variant products using

features as compilation parameters. The reasons we used

this technique are: we can insert variation points to any

code units of programs; it is a simple and widely used

mechanism; and there exists various lexical preprocessors

(e.g., C preprocessor [24], Antenna for Java ME [25],

pure::variants [26], Gears [27]) supporting the mechanism.

(Aspect-orientation can be an alternative if the pro-

gramming language supports aspect-orientation.)

In this process we: 1) derive macro expressions from

the variation point specifications; 2) reengineer the legacy

programs to the product line asset with embedded

variation points and variants using macro expressions;

and 3) check consistency between the asset and the

feature model. The steps 2 and 3 are performed iteratively

and incrementally; if any inconsistency between the asset

and the feature model is identified, the asset is

reengineered to resolve the inconsistency. Details of these

steps are discussed below.

6.1 Deriving Macro Expressions

To meet the variability requirements of the SPL, we

must insert variation points into the asset code. We

embed variants and variation points (found in the

previous process) into the asset code using a conditional

compilation technique. Activities for transforming variation

point specifications to macro expressions using the

feature model are as follows:

� First macro variables are derived from the names of

variable features in the feature model.

� Based on VVMs, we define compilation conditions of

the variants. For each variant, the corresponding

variation point specification (identified from VVMs)

is transformed to a conditional compilation condition

that will be inserted with “#if” statement as a

variation point to the code variant. The feature

names included in the variation point specification

are transformed to the corresponding macro names,

∧, ⊕, ∨, ¬ operators used in the variation point

specification are transformed to &&, ^, ||, and !,

respectively. For example, if there exists a set such

that {(f1∧ (¬ f2)), v} ∈ Mvp-v (where v is a

variant and f1 and f2 are features), we will insert

“#if (f1 && (! f2))” to the variant v.

The identified variation points are embedded into the

asset in the following step.

6.2 Reengineering the Legacy Programs to an Asset

The purpose of this step is to reengineer the legacy

programs to an asset with embedded variation points and

variants.

The first activity is to create a reference architecture

that satisfies quality attributes of the SPL and is adaptable

for products in the SPL. We can modify the legacy

architecture, or create a new one if modification of the

legacy architecture requires an excessive effort [28]. While

modifying architecture, we have to carefully analyze

interactions/dependencies between features, and architecture

reengineering principles [28-29] could be applied. In the

Notepad++ case study, we decided to reuse the legacy

architecture of the latest version of Notepad++, because the

architecture supports all of required features and satisfies

the required quality attributes (e.g., performance).

Next, we modify the legacy components based on the

architecture. Some components may be reused without

modification, but others may need to be modified to satisfy

functional/non-functional requirements. While modifying

them, we continue to evaluate the quality attributes and any

improvement actions (e.g., refactoring) can happen. (For

348 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제7호(2017. 7)

example, we removed code segments of unused features or

duplicated code segments in legacy Notepad++ components.)

Also, while modifying them, we updated VVMs to trace

features to the reengineered asset. To meet the variability

requirements of the SPL, the macro expressions identified

in the previous step are inserted into component code.

To create an asset that are structurally and operationally

consistent with the feature model, we continuously check

the consistency between the asset and the feature model

while reengineering the legacy programs; this activity is

described in the next step.

6.3 Checking Consistency between the Feature Model and

the Product Line Asset

The purpose of this step is to identify inconsistencies

between the created asset and the feature model. If any

inconsistencies are identified, we perform the previous step

(described in section 6.2) again and reengineer the asset to

resolve the inconsistencies.

The information used for consistency checking are

VVMs and the feature model. The consistency rules are as

follows:

� For any two features f1 and f2 of the feature model,

� 1) If f1 is composed of f2 or f1 is generalization of f2,

there must be a composition or specialization relationship

from the variant mapped to f1 to the variant mapped

to f2 in the implementation.

� 2) If f1 is composed of f2 or f1 is generalization of f2,

and if f2 is variable, the variant mapped to f1 must

not have direct or indirect operation dependency with

the variant mapped to f2.

� 3) If f1 does not require f2, f2 is not composed of f1

and f2 is not generalization of f1, the variant mapped

to f1 must not have direct or indirect operation

dependency with the variant mapped to f2.

� 4) If f1 excludes f2 or if f1 and f2 are alternatives, the

variant mapped to f1 must not have direct or indirect

composition, specialization, or operation dependency on

the variant mapped to f2, and vice versa.

�

Fig. 14. An inconsistency example

For example, in Fig. 14, we do not have a require de-

pendency between Language Automatic Detection and

Syntax Highlight of INI File but, in the legacy im-

plementation of Notepad++, the variant mapped to Language

Automatic Detection has an operation dependency on the

variant mapped to Syntax Highlight of INI File. Based on

the 3rd consistency rule, we identified this inconsistency

and reengineered the implementation.

The proposed method will be evaluated in the next

section.

7. Evaluation

In order to evaluate our approach, we extracted an asset

from the legacy products of Notepad++ and then compared

the SPL version with the legacy products. From the legacy

products of Notepad++, we selected five (from version 1.2

to 1.6) because the changes for these products have mostly

been due to inclusion/exclusion of “major” features of

source code editors, such as GUI Configuration, Multi-User

based Configuration, Bookmark, etc. Using the method, we

defined 24 optional features, and identified 30 feature

relationships that are not described in documentation. The

identified features and relationships are explicitly modeled

in a feature model (Fig 13 shows a part of the feature

model).

The feature model helped us understand the structure of

the programs and analyze relationships between features

hidden in the legacy code. When we validate the identified

relationships, some relationships that are logically incorrect

were modified (an example was explained in section 5.3).

We derived macro expressions from the feature model, and

reengineered the legacy programs while embedding the

macro expressions. As we mentioned in section 6.2, we

reused the architecture of the latest version (i.e., program

5). When we analyzed legacy programs, we could identify

duplications across them. Some parts of the code that were

used in the previous version were not used anymore

(because corresponding features were excluded) but still

existed in the following versions (e.g., 835 lines of code and

255 lines of comments in the program 5). While extracting

the asset, such code was removed. Also, we improved the

legacy design by encapsulating language defendant features

and encoding standard features that have been changed

frequently. Using the consistency rules, we identified some

inconsistencies in the extracted asset, and reengineered the

asset to resolve the inconsistencies (as shown in Fig 14).

When we analyzed the asset code, we found that

variation points embedded in the asset were clearly mapped

레거시 어플리케이션 제품군으로부터 제품라인 자산을 추출하는 휘처 기반의 방법 349

to features of the feature model; the variation points were

embedded as conditional compilation directives and macro

names in the conditions are mapped to features of the

feature model. Also, as the structure of the code is

consistent with the structure of the features, it was easy to

trace features to variation points embedded in the asset. To

validate the asset, we generated legacy program from the

SPL asset by selecting features specific to each legacy

program, and checked whether the generated programs

worked correctly. In addition, we instantiated new programs

selecting new sets of features and tested the programs. As

relationships between features were explicitly modeled, we

could avoid selection of wrong combinations of features

(e.g., selecting two features mutually exclusive). The asset

code was integrated correctly according to the selection of

features, and all instantiated programs worked correctly

without any errors.

8. Related Work

As briefly mentioned in section 1, some papers presented

methods for extracting an asset from a family of legacy

programs developed by clone-and-own reuse. Bayer and

others ([6, 7]) proposed a method for refactoring legacy

components to an asset and used a decision model to

capture variation points/variants of legacy software variants.

It provides a good overview of which decisions exist, which

files are influenced by the decision, and which decisions are

used in a certain file. However, relationships between

decisions were not explicitly capture and modeled (they

were hidden in dependencies between files.). Alves and

others ([8-10]) proposed a method for “bootstrapping” an

asset from legacy systems and evolving the asset using

aspect-oriented refactoring patterns. However, an

aspect-orientation is a mechanism to insert variation points

in implementation rather than model and manage

relationships between aspects; it is difficult to understand

the relationships between variation points. Alves et al. [8]

mentioned that features could be mapped to aspects but

they did not focus on separating a feature model from

implementation, and maintaining the asset based on the

feature model. As with other methods, relationships

between variation points are mostly hidden in design/code

and it is difficult to systematically extract and manage an

asset. Unlike these methods, we explicitly model variation

points and relationships between them in a feature model

separate from an asset, and then extract and manage the

asset based on the feature model.

As we construct a feature model bottom-up from a

family of legacy programs, some researchers proposed

methods to construct feature model bottom-up from legacy

programs. Antkiewicz et al. [32] extracted features from a

set of systems that extended the same framework. The

purpose of their research is to extract a framework-specific

model that represents instances of framework-provided

concepts implemented in framework completion code. They

used feature model as a framework-specific model and

detected a set of patterns with source code queries to

extract features. However, their work is limited to

framework-based systems and requires a framework-

specific modeling language [33] of a framework to extract

features. Also, they cannot identify alternative features and

configuration dependencies (i.e., require, exclude) between

features. Our method can be applied to any family of legacy

systems including framework-based systems.

Yang et al. [34] approach was based on detecting

consistent data access semantics (i.e., similar usage of data

entities by the methods in the applications) from similar

open source systems that have similar data models. The

records are then analyzed using Formal Concept Analysis

to find the maximal set of objects (i.e., methods) that share

a maximal set of attributes (i.e., data access semantics).

Their method may be useful for data-transformation-based

applications to identify business functions, but, with their

method we cannot extract variable features that do not

change data models, and also cannot identify configuration

dependencies (i.e., require, exclude) between features.

Some researchers proposed methods to construct a

variability model top-down from requirements documents.

Rauf et al. [35] presented a framework allowing: 1) the

specification of logical structures in terms of their content,

textual rendering, and variability, and 2) the extraction of

instances of such structures from rich-text documents.

Their method is useful to identify structure of a variability

model when requirements documents are available.

However, structural/configuration relationships between

features are usually hidden in the legacy programs rather

than explicitly captured in documentation.

She et al. [23] proposed procedures for reverse

engineering feature models from configuration files and

feature descriptions (They also mentioned that the

dependencies could be extracted from a code base but

details were not presented.). In their approach, they

assumed that variation points were embedded in a family of

legacy programs. However, legacy programs developed by

clone-and-own reuse mostly have been developed and

maintained like single programs and usually do not embed

variation points. In our approach, we defined procedures and

rules for identifying variants/variation points of a family of

350 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제7호(2017. 7)

legacy programs that do not have embedded variation

points, and analyzing relationships between the variation

points. When constructing a feature model, She et al.

identified structural relationships (i.e., composed-of, gen-

spec) between features from feature descriptions. However,

we identified the relationships from implementation because

we wanted to identify all of feature relationships that are

not explicitly captured in documentation.

Since the feature oriented domain analysis [18] was

introduced, some researchers performed reengineering and

refactoring from the feature-oriented perspective. Kang and

others [28-29] reengineered a credit card authorization

system based on a feature model to improve reusability of

components, and reengineered legacy home service robot

applications into an asset using a feature-oriented method

[36]. Liu et al. [37] introduced the feature oriented refactoring

(FOR) process which decomposes a system into features and

reengineered the system based on the features. They

reengineered an open source data base system implemented

in Java using the FOR process. Trujillo et al. [38]

re-engineered the AHEAD Tool Suite in a way similar to

FOR. Although these researchers performed reengineering in

terms of features, they did not consider extracting asset

components from a family of legacy applications for use in

creating an asset base for a product line. Their methods are

not in the context of an extractive approach.

Satyananda et al. [39] provided a formal approach to

verification of consistency between a feature model and

component, as well as a connector view of the software

architecture. They introduced a model for feature

description and architecture description, and they illustrated

a consistency verification approach that uses the Prototype

Verification System (PVS). The difference is that their

approach is based on a design description, while we rely on

implementation.

Recently, there have been researches on extracting a

variability model (e.g., feature model) from a family of

legacy applications [40-42]. These researches can support

legacy program analysis and feature modeling process of

the proposed method. Also, there have been researches on

checking consistency between a variability model and

product line implementation [41, 43]. These researched can

be used in the feature-oriented product line reengineering

process of the proposed method.

9. Conclusion

Clone-and-own reuse based software development often

has problems of degradation of software quality such as

high maintenance costs, unused code in the program, and

spaghetti/error-prone code. To overcome these difficulties,

many organizations that have used clone-and-own reuse

now want to migrate their legacy products to SPL.

However, since most existing researches directly embedded

variation points into the asset without modeling variation

points separately, it was difficult to systematically engineer

and maintain the asset. In this paper, we have established a

method for creating a feature model from a family of legacy

products developed by clone-and-own reuse and then

engineering a feature-oriented asset that are consistent

with the feature model.

We have shown how a feature model can play a key role

in an extractive SPL approach. We applied the method to

the family of legacy Notepad++ products and our analyses

have demonstrate the feasibility of the method.

There are some issues related to the approach.

� Detecting code not related to feature changes: When

we compare legacy programs using the AST based

program comparison [21], we could detect code changes

that are not related to feature changes, such as

bug-fixes, naming convention changes, refactoring, etc.

In the method, we analyze the code changes and then

decide whether the changes are related to features;

however, this may require intensive manual efforts if

many changes are detected. To address this, we can use

tools [44, 45] for detecting code changes caused by

naming convention and refactoring but more researches

are needed.

� Tool support: Every step of the processes (in Fig 4) is

supported by tools. AST based program comparison tool

[21] and reengineering supporting tools [30, 46] are

available for steps 1 and 6, respectively. We are currently

developing tools for supporting other steps as well.

� Scalability of the method: We have applied the

method to Notepad++ products whose size is relatively

small compared to other heavy commercial software

(e.g., engine control systems), but we believe our

method will scale up for product lines without dynamic

variation. Stability of a product line can be an issue, not

so much of the size.

This research is the first step towards a feature-oriented

extractive approach to SPL. In this paper, we focused on

creating a feature model from a family of legacy programs

and embedding variable features (as variation points) into

the asset code, in order to demonstrate that a feature model

works well as the central model for variability management.

In the next step, we plan to extend this method to support

레거시 어플리케이션 제품군으로부터 제품라인 자산을 추출하는 휘처 기반의 방법 351

feature-oriented product line architecture engineering based

on our previous works [28-29], and also support dynam-

ically configurable features.

References

[1] J. Bosch, “Design & Use of Software Architectures,”

Addison-Wesley, 2000.

[2] A. Maccari, “Experiences in assessing product family

software architecture for evolution,” in Proceedings of the

24th International Conference on Software Engineering

(ICSE), pp.585-592. ACM, 2002.

[3] H. P. Jepsen et al., “Minimally invasive migration to software

product lines,” in Proceedings of the 11th International

Software Product Line Conference (SPLC), pp.203-211, 2007.

[4] K. Yoshimura et al., “Defining a strategy to introduce a

software product line using existing embedded systems,” in

Proceedings of the 6th ACM & IEEE International

Conference on Embedded Software, Seoul, Korea, Oct., 22-25,

2006.

[5] K. Yoshimura, “Model-based design of product line com-

ponents in the automotive domain,” in Proceedings of the 12th

SPLC, Limerick, Ireland, Sep., 8-12, 2008.

[6] J. Bayer et al., “Transiting legacy assets to a product line

architecture,” in Proceedings of the 7th European Software

Engineering Conference, Held Jointly with the 7th ACM

SIGSOFT Symposium on the Foundations of Software

Engineering, Toulouse, France, Sep., 1999.

[7] R. Kolb et al., “Refactoring a legacy component for reuse in

software product lines: a case study,” J. Softw. Maint. Evol.:

Res. Pract, Vol.18, No.2, pp.109-132, 2006.

[8] V. Alves et al., “Extracting and evolving mobile games

product lines,” in Proceedings of the 9th SPLC, Rennes,

France, Sep., 26-29, 2005.

[9] V. Alves et al., “Extracting and evolving code in product lines

with aspect-oriented programming,” Transactions on AOSD

IV (LNCS 4640), pp.117-142, 2007.

[10] V. Alves et al., “From conditional compilation to aspects: a

case study in software product lines migration,” in Pro-

ceedings of the 1st Workshop on Aspect-oriented Product

Line Engineering, Portland, Oregon, USA, Oct., 22, 2006.

[11] D. Faust and C. Verhoef, “Software product line migration

and deployment,” Softw. Pract. Exper, Vol.33, No.10

pp.933-955, 2003.

[12] A. Mehta and G. T. Heineman, “Evolving legacy system

features into fine-grained components,” in Proceedings of

the 24th ICSE, Orlando, Florida, USA, May, 19-25, 2002.

[13] P. Frenzel et al., “Extending the reflexion method for

consolidating software variants into product lines,” in

Proceedings of the 14th Working Conference on Reverse

Engineering (WCRE), Vancouver, BC, Oct., 28-31, 2007.

[14] H. P. Breivold et al., “Migrating industrial systems towards

software product lines: experiences and observations

through case studies,” in Proceedings of the 34th Euromicro

Conference on Software Engineering and Advanced

Applications, Parma, Italy, Sep., 3-5, 2008.

[15] M. V. Couto et al., “Extracting software product lines: a case

study using conditional compilation,” in Proceedings of the

15th European Conference on Software Maintenance and

Reengineering, Oldenburg, Germany, Mar., 1-4, 2011.

[16] Notepad++ [Internet], http://notepad-plus-plus.org/.

[17] Notepad++ Forum [Internet], http://sourceforge.net/projects/

notepad-plus/forums/.

[18] K. C. Kang et al., “Feature-oriented domain analysis (FODA)

feasibility study,” Technical Report. CMU/SEI-90-TR-21,

1990.

[19] J. Lee et al., “A holistic approach to feature modeling for

product line requirements engineering,” Requirements

Engineering Journal (REJ), Sept., 2013.

[20] R. N. Charette, “This car runs on code,” IEEE Spectrum,

Feb., 2009.

[21] Eclipse C/C++ Development Tooling (CDT) [Internet],

http://eclipse.org/cdt/.

[22] J.-L. Chen et al., “An object-oriented dependency graph for

program slicing,” in Proceedings of the Technology of

Object-Oriented Languages, pp.121-130. IEEE, 1997.

[23] S. She et al., “Reverse engineering feature models,” in

Proceedings of the 33rd ICSE, Honolulu, HI, USA, May

21-28, 2011.

[24] International Organization for Standardization, “ISO/IEC

9899-1999: Programming Languages—C,” 1999.

[25] E. Figueiredo et al., “Evolving software product lines with

aspects: An empirical study on design stability,” in

Proceedings of the 30th ICSE, pp.261–270. ACM Press,

2008.

[26] D. Beuche, “Modeling and building software product lines

with pure: variants,” in Proceedings of the 16th SPLC, Vol.2,

pp.255-255. ACM, 2012.

[27] BigLevel Software, Inc., Austin, TX, USA, “BigLever

Software Gears: User’s Guide,” version 5.5.2 edition, 2008.

[28] K. C. Kang et al., “Re-engineering a credit card authorization

system for maintainability and reusability of components -

a case study,” in Proceedings of the 9th ICSR, Torino, Italy,

June, 11-15, 2006.

[29] K. C. Kang et al., “Feature-oriented re-engineering of legacy

systems into product line assets - a case study,” in

Proceedings of the 9th SPLC, Rennes, France, Sept., 26-29,

2005.

[30] Understand - source code analysis and metrics [Internet],

http://www.scitools.com/.

[31] J. Kerievsky, “Refactoring to patterns,” Addison-Wesley,

2004.

352 정보처리학회논문지/소프트웨어 및 데이터 공학 제6권 제7호(2017. 7)

[32] M. Antkiewicz et al., “Fast extraction of high-quality

framework-specific models from application code,” Autom.

Softw. Eng., Vol.16, pp.101-144, 2009.

[33] M. Antkiewicz, “Framework-specific modeling languages,”

PhD Thesis, Electrical and Computer Engineering,

University of Waterloo, 2008.

[34] Y. Yang et al., “Domain feature model recovery from multiple

applications using data access semantics and formal concept

analysis,” in Proceedings of the 16th WCRE, Lille, France,

Oct., 13-16, 2009).

[35] R. Rauf et al., “Logical structure extraction from software

requirements documents,” in Proceedings of the 19
th

International Requirements Engineering Conference,

pp.101-110, IEEE, 2011.

[36] K. C. Kang et al., “Feature oriented product line engineering,”

IEEE Software, Vol.19, No.4, pp.58-65, 2002.

[37] J. Liu et al., “Feature oriented refactoring of legacy

applications,” in Proceedings of the 28th ICSE, Shanghai,

China, May, 20-28, 2006.

[38] S. Trujillo et al., “Feature refactoring a multi-representation

program into a product line,” in Proceedings of the 5th

International Conference on Generative Programming and

Component Engineering, Portland, Oregon, Oct., 22-26,

2006).

[39] T. K. Satyananda et al., “Identifying traceability between

feature model and software architecture in software product

line using formal concept analysis,” in Proceedings of the

International Conference on Computational Science and Its

Applications, Kuala Lumpur, Malaysia, Aug., 26-29, 2007.

[40] M. Acher et al., “On extracting feature models from product

descriptions,” in Proceedings of the 6th International

Workshop on Variability Modeling of Software-Intensive

Systems, pp.45-54, 2012.

[41] D. M. Le et al., “Validating consistency between a feature

model and its implementation,” in Proceedings of the

International Conference on Software Reuse, pp.1-16, 2013.

[42] S. Nadi et al., “Mining configuration constraints: Static

analyses and empirical results,” in Proceedings of the 36th

ICSE, pp.140-151, 2014.

[43] A. R. Santos et al., “Strategies for consistency checking on

software product lines: a mapping study,” in Proceedings

of the 19th International Conference on Evaluation and

Assessment in Software Engineering, p.5, 2015.

[44] A. Loh and M. Kim, “LSdiff: a program differencing tool to

identify systematic structural differences,” in Proceedings

of the 32nd ICSE, Cape Town, South Africa, May, 2-8, 2010.

[45] M. Kim et al., “Ref-Finder: a refactoring reconstruction tool

based on logic query templates,” in Proceedings of the 18th

ACM SIGSOFT Symposium on the Foundations of Software

Engineering, Santa Fe, New Mexico, USA, Nov., 7-11, 2010.

[46] Lattix, Inc, Andover, MA, USA. “The Lattix™ Approach -

DSM for Software Architecture,” 2004.

Hyesun Lee

e-mail : hyesun.lee@etri.re.kr

She received a B.S. degree in Computer

Science and Engineering (CSE) from

Pohang Univ. of Science and Technology

(POSTECH) in 2009. She received a Ph.D.

degree in CSE from POSTECH in 2015. She

has been a senior researcher at Electronics and Telecommunications

Research Institute (ETRI) since 2015. Her research interests are

in the area of software reuse, software product line engineering,

and Internet of Things (IoT) platforms and systems.

Kang Bok Lee

e-mail : kblee@etri.re.kr

He received a B.S. degree in Electronic

Engineering from Kyungpook National

Univ. in 1993. He received a M.S. degree in

Information and Communication Engineering

from Chungbuk National Univ. in 2000. He

completed a Ph.D. course in Information and Communication

Engineering from Chungbuk National Univ. in 2002. He was a

senior researcher at LG Semicon Co., Ltd. from 1993 to 2000. He

has been a Principal researcher at ETRI since 2000. His research

interests are in the area of RFID/NFC, ROIC, Biosignal processing,

and IoT sensor application technology.

