• Title/Summary/Keyword: 소셜러닝

Search Result 89, Processing Time 0.021 seconds

Development of Image Classification Model for Urban Park User Activity Using Deep Learning of Social Media Photo Posts (소셜미디어 사진 게시물의 딥러닝을 활용한 도시공원 이용자 활동 이미지 분류모델 개발)

  • Lee, Ju-Kyung;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.42-57
    • /
    • 2022
  • This study aims to create a basic model for classifying the activity photos that urban park users shared on social media using Deep Learning through Artificial Intelligence. Regarding the social media data, photos related to urban parks were collected through a Naver search, were collected, and used for the classification model. Based on the indicators of Naturalness, Potential Attraction, and Activity, which can be used to evaluate the characteristics of urban parks, 21 classification categories were created. Urban park photos shared on Naver were collected by category, and annotated datasets were created. A custom CNN model and a transfer learning model utilizing a CNN pre-trained on the collected photo datasets were designed and subsequently analyzed. As a result of the study, the Xception transfer learning model, which demonstrated the best performance, was selected as the urban park user activity image classification model and evaluated through several evaluation indicators. This study is meaningful in that it has built AI as an index that can evaluate the characteristics of urban parks by using user-shared photos on social media. The classification model using Deep Learning mitigates the limitations of manual classification, and it can efficiently classify large amounts of urban park photos. So, it can be said to be a useful method that can be used for the monitoring and management of city parks in the future.

Review of Artificial Intelligence and Deep Learning Technique for Hydrologic Prediction (수난 예측을 위한 인공지능 및 딥러닝 기법)

  • Hwang, SeokHwan;Lee, Jeongha;Oh, Byoung-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.372-372
    • /
    • 2020
  • 사회가 다원화되고 발달하면서 생활환경과 행동양식에 따라 홍수 등의 수난(水難) 으로 인한 피해 정도와 양상은 크게 달라질 수 있으나, 수난으로 인한 체감 가능한 피해의 정도와 규모는 예측이 어려운 현실이다. 그리고, 최근 인터넷과 소셜 네트워크 서비스(SNS)의 급진적 발달은 재난 관리에 대중적 지식을 수집하여 활용하도록 촉진하고 있고, 이로 인해 재난 상황에서 '대중적인 정보가 기술자에 의해 어떻게 얼마나 신중하게 고려되어야 하는지와 어떻게 과학적으로 해석해야하는지'가 핵심 쟁점으로 부상하고 있다. 본 연구에서는 최근 널리 사용되는 인공지능 및 딥러닝 기법을 조사 분석하였다. 분석을 통해 수문 예측 분야에서 이러한 기술이 적용된 사례와 신기술을 조망해 보고 기존 기술이 인공지능 및 딥러닝 기법의 적용으로 대체 가능한 정도를 가늠해 보았다.

  • PDF

A study on association analysis among nodes in information diffusion and mobility pattern for mobile social networks (모바일 소셜 네트워크 환경에서 이동 패턴과 정보 유포 연관성 분석 연구)

  • Ryu, Jegwang;Yong, Sung-Bong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.90-92
    • /
    • 2017
  • Due to the popularity of social networks and the development of technology in mobile networking, the mobile social networks (MSNs) provide opportunities for the spread of information between mobile devices. As a result, understanding the information diffusion in the emerging MSNs is a critical issue. Many research studies have addressed diffusion minimization, which is a problem of how to find the proper initial k users who can effectively propagate as widely as possible in the minimum amount of time, similar to influence maximization. We address a study on association analysis among nodes in information diffusion and mobility pattern for mobile social networks. Experiments in our study were conducted in the Opportunistic Network Environment (ONE) simulator using GPS trace of mobile node, to show that the study results in MSNs. We also demonstrate that our experiments outperform other existing algorithms with various communication range and ratio of k influential nodes.

  • PDF

A Study on the Utilization of Open Learning Platform to Reduce Private Education Cost of Elementary Education (초등교육의 사교육비 절감을 위한 개방형 학습 플랫폼 활용에 관한 연구)

  • Shim, Jae-Young;Kwon, Mee-Rhan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2018
  • STEAM and S / W education in public education are effective in fostering talented people and the talents of the 4th industrial revolution era. It is necessary to expand the teachers for this purpose, to find out and apply various learning materials, and to improve education environment for fusion talent education. An open learning platform is effective in reducing private education costs and supplementing public education. Especially, it is useful for flip learning combined with classroom (off-line). In this case, teacher's role can be transformed into active teaching activities and research activities, which can speed up normalization of public education and reduce private education.In particular, the core functions of the MOOC platform for elementary education are 'creative instructional design and contents development function', 'digital teaching and learning curation', 'big data based learner customization', 'learning participation' flip learning and social Learning function.Through this study, it is expected that discussion on the introduction of MOOC for career and admission education for adolescents including elementary education will be established and the Korean youth MOOC platform will be developed and developed as a global advanced model of education democratization.

Design and Implementation of Hashtag Recommendation System Based on Image Label Extraction using Deep Learning (딥러닝을 이용한 이미지 레이블 추출 기반 해시태그 추천 시스템 설계 및 구현)

  • Kim, Seon-Min;Cho, Dae-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.709-716
    • /
    • 2020
  • In social media, when posting a post, tag information of an image is generally used because the search is mainly performed using a tag. Users want to expose the post to many people by attaching the tag to the post. Also, the user has trouble posting the tag to be tagged along with the post, and posts that have not been tagged are also posted. In this paper, we propose a method to find an image similar to the input image, extract the label attached to the image, find the posts on instagram, where the label exists as a tag, and recommend other tags in the post. In the proposed method, the label is extracted from the image through the model of the convolutional neural network (CNN) deep learning technique, and the instagram is crawled with the extracted label to sort and recommended tags other than the label. We can see that it is easy to post an image using the recommended tag, increase the exposure of the search, and derive high accuracy due to fewer search errors.

Machine Learning-based Phishing Website Detection Model (머신러닝 기반 피싱 사이트 탐지 모델)

  • Sumin Oh;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.575-580
    • /
    • 2024
  • Detecting the status of websites, normal or phishing, is necessary to defend against intelligent phishing attacks. We propose a machine learning-based classification to predict the status of websites. First, we collect information about 'URL', convert it into numerical data, and remove outliers. Second, we apply VIF(Variance Inflation Factors) to understand the correlation and independence between variables. Finally, we develop a phishing website detection model with machine learning-based classifications, which predicts website status. In the test datasets, Random Forest showed the best performance, with precision of 93.74%, recall of 92.26%, and accuracy of 93.14%. In the future, we expect to apply our model to detect various phishing crimes.

Development of Social Data Collection and Loading Engine-based Reliability analysis System Against Infectious Disease Pandemic (감염병 위기 대응을 위한 소셜 데이터 수집 및 적재 엔진 기반 신뢰도 분석 시스템 개발)

  • Doo Young Jung;Sang-Jun Lee;MIN KYUNG IL;Seogsong Jeong;HyunWook Han
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.103-111
    • /
    • 2022
  • There are many institutions, organizations, and sites related to responding to infectious diseases, but as the pandemic situation such as COVID-19 continues for years, there are many changes in the initial and current aspects, and accordingly, policies and response systems are evolving. As a result, regional gaps arise, and various problems are scattered due to trust, distrust, and implementation of policies. Therefore, in the process of analyzing social data including information transmission, Twitter data, one of the major social media platforms containing inaccurate information from unknown sources, was developed to prevent facts in advance. Based on social data, which is unstructured data, an algorithm that can automatically detect infectious disease threats is developed to create an objective basis for responding to the infectious disease crisis to solidify international competitiveness in related fields.

Trends in Social Media Participation and Change in ssues with Meta Analysis Using Network Analysis and Clustering Technique (소셜 미디어 참여에 관한 연구 동향과 쟁점의 변화: 네트워크 분석과 클러스터링 기법을 활용한 메타 분석을 중심으로)

  • Shin, Hyun-Bo;Seon, Hyung-Ju;Lee, Zoon-Ky
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.99-118
    • /
    • 2019
  • This study used network analysis and clustering techniques to analyze studies on social media participation. As a result of the main path analysis, 37 major studies were extracted and divided into two networks: community-related networks and new media-related. Network analysis and clustering result in four clusters. This study has the academic significance of using academic data to grasp research trends at a macro level and using network analysis and machine learning as a methodology.

  • PDF

Predicting Relationship Between Instagram Use and Psychological Variables During COVID-19 Quarantine Using Multivariate Techniques (다변량 분석 방법을 이용한 인스타그램 이용과 심리적 변인 간의 관계 예측: COVID-19로 인한 자가격리자를 중심으로)

  • Chaery Park;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.3-14
    • /
    • 2023
  • Recently, the effect of using social media on psychological well-being has been highlighted. However, studies exploring factors that may predict the quality of social media relationships are relatively rare. The present study investigated whether social media activity and psychological states, such as loneliness and depression, can predict the quality of social media relationships during the COVID-19 quarantine period using a machine learning technique. Ninety-five participants completed a self-report survey on loneliness, Instagram activity, quality of social media relationships, and depression at different time points (during the self-isolation and after the release of self-isolation). Similarity analyses, including multidimensional scaling (MDS), representational similarity analysis (RSA), and classification analyses, were conducted separately at each point in time. The results of MDS revealed that time spent on social media and depression were distinguished from others in the first dimension, and loneliness and passive use were distinguished from others in the second dimension. We divided the data into two groups based on the quality of social media relationships (high and low), and we conducted RSA on each group. Findings indicated an interaction between the quality of the social media relationships and the situation. Specifically, the effect of self-isolation on the high-quality social media relationship group is more pronounced than that on the low-quality group. The classification results also revealed that the predictors of social media relationships depend on whether or not they are isolated. Overall, the results of this study imply that social media relationship could be well predicted when people are not in isolated situations.

A Deep Learning-based Depression Trend Analysis of Korean on Social Media (딥러닝 기반 소셜미디어 한글 텍스트 우울 경향 분석)

  • Park, Seojeong;Lee, Soobin;Kim, Woo Jung;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.91-117
    • /
    • 2022
  • The number of depressed patients in Korea and around the world is rapidly increasing every year. However, most of the mentally ill patients are not aware that they are suffering from the disease, so adequate treatment is not being performed. If depressive symptoms are neglected, it can lead to suicide, anxiety, and other psychological problems. Therefore, early detection and treatment of depression are very important in improving mental health. To improve this problem, this study presented a deep learning-based depression tendency model using Korean social media text. After collecting data from Naver KonwledgeiN, Naver Blog, Hidoc, and Twitter, DSM-5 major depressive disorder diagnosis criteria were used to classify and annotate classes according to the number of depressive symptoms. Afterwards, TF-IDF analysis and simultaneous word analysis were performed to examine the characteristics of each class of the corpus constructed. In addition, word embedding, dictionary-based sentiment analysis, and LDA topic modeling were performed to generate a depression tendency classification model using various text features. Through this, the embedded text, sentiment score, and topic number for each document were calculated and used as text features. As a result, it was confirmed that the highest accuracy rate of 83.28% was achieved when the depression tendency was classified based on the KorBERT algorithm by combining both the emotional score and the topic of the document with the embedded text. This study establishes a classification model for Korean depression trends with improved performance using various text features, and detects potential depressive patients early among Korean online community users, enabling rapid treatment and prevention, thereby enabling the mental health of Korean society. It is significant in that it can help in promotion.