• Title/Summary/Keyword: 셀룰로오스 종이

Search Result 112, Processing Time 0.025 seconds

Changes in Physical Properties and Wood Chemical Components of sawdust medium during Oak Mushroom (Lentinula edodes) Cultivation (표고 재배 중 톱밥 배지의 물리적 성질과 목재 화학성분 변화)

  • Jong-Shin Lee;Seog-Goo Kang;Seung-Min Yang;Jin-Kyoung Kim
    • The Korean Journal of Mycology
    • /
    • v.50 no.4
    • /
    • pp.291-300
    • /
    • 2022
  • In this study, the physical properties of the medium and changes in the wood chemical composition of the sawdust were investigated during the cultivation of oak mushroom sawdust bags, and the following results were obtained. After inoculation, the weight of the medium decreased during the incubation period. It is determined that this is not due to evaporation of moisture containing the medium or decomposition of sawdust, but to decomposition of rice bran, a low molecular substance added to the medium. It was confirmed that the moisture content of the medium was steadily increased during incubation, and it was estimated that the organic substrates such as rice brane in the medium was decomposed by mycelium, and water, one of the decomposition products of organic substrates, caused an increase in the moisture content of the medium. Along with the increase in the harvest of oak mushrooms, the proportion of organic substances such as holocellulose and lignin, the main components of the wood cell wall of sawdust, steadily decreased. In particular, the degradation characteristics of the wood cell wall component of shiitake, which is a white rot fungi, were confirmed by higher lignin reduction rate than that of holocellulose. On the other hand, ash, which is an inorganic material, increased with an increase in the number of mushroom harvests. The increase in the amount of ash in the medium may have been due to the decrease in the organic matter content such as holocellulose and lignin.

Changes of Fruit Characteristics and Cell Wall Component during Maturation and Ripening in Asian Pear 'Hanareum', 'Manpungbae', and 'Niitaka' (Pyrus pyrifolia Nakai) ('한아름', '만풍배' 및 '신고' 배의 성숙 기간 중 과실특성 및 세포벽 관련물질의 변화)

  • Vu, Thi Kim Oanh;Lee, Ug-Yong;Choi, Jin-Ho;Lee, Han-Chan;Chun, Jong-Pil
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.345-356
    • /
    • 2012
  • We investigated the changes of fruit quality parameters, polysaccharide contents and cell wall components during maturation and ripening of two Korean pear cultivar 'Hanareum' and 'Manpungbae' compared with 'Niitaka' pear (Pyrus pyrifolia Nakai) which showed different physiological maturity based on days after full bloom (DAFB). Flesh firmness decreased continuously with fruit development and maturation, reaching a final level of 29.4, 33.5, and 27.4N at maturity in 'Hanareum' (127 DAFB), 'Manpungbae' (163 DAFB), and 'Niitaka' (170 DAFB), respectively. The level of ethylene production was very low in early season 'Hanareum' pear which showed at most 0.39 ${\mu}L{\cdot}L^{-1}$ at maturity and no ethylene was detected in 'Manpungbae' and 'Niitaka' at maturity. Fructose was the most abundant soluble sugar during fruit maturation in the pears tested and an increase of sucrose was observed during fruit ripening in the Asian pears commonly. Ethanol insoluble solids (EIS) content decreased gradually with different levels among the pear cultivars as fruit ripens consisted of 10.79, 12.72, and 12.75 $mg{\cdot}g^{-1}$ FW. The amount of total soluble polyuronides was higher in early season cultivars 'Hanareum' than those of mid-season cultivar 'Manpungbae' and 'Niitaka'. In 'Niitaka' which harvested most late season, the level of 4% KOH soluble hemicelluloses was lower than 'Hanareum' and 'Manpungbae' and maintained constantly during fruit ripening period. Cellulosic residues were determined high level in 'Niitaka' which showed 612.33 ${\mu}g{\cdot}mg^{-1}$ EIS at maturity when compared with 'Hanareum' (408.0 ${\mu}g{\cdot}mg^{-1}$ EIS) and 'Manpungbae' (538.67 ${\mu}g{\cdot}mg^{-1}$ EIS). The main constituents of cell wall neutral sugars which consisted of arabinose, xylose, galactose, and glucose were decreased gradually with onset of fruit ripening regardless of cultivar. Arabinose which was predominant in 'Hanareum' pear decreased at the last stage of ripening, but the changes of cell wall neutral sugar during ripening were not occurred in 'Niitaka' pear. The change of molecular mass distribution in water soluble pectin observed dominantly at the early stage of fruit development. Depolymerization of 4% KOH-soluble hemicelluloses and degradation of xyloglucan showed in early-season cultivar 'Hanareum' during fruit maturation, and degradation of those fractions were detected only at the early stage fruit development in mid-season cultivar 'Manpungbae' and 'Niitaka'. The molecular mass profile of CDTA soluble pectin, $Na_2CO_3$-SP and 24% KOH soluble hemicelluloses showed no significant change during fruit maturation regardless of cultivar.

Investigation of Physicochemical Properties of Bio-oils Produced from Pitch Pine (Pinus rigida) at Various Temperatures (열분해 온도에 따른 리기다소나무 바이오오일의 물리·화학적 특성 평가)

  • Kim, Tae-Seung;Kim, Jae-Young;Oh, Shin-Young;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2012
  • In this study, fast pyrolysis of pitch pine (Pinus rigida) was performed in a fluidized bed reactor under the temperature ranges between 400 and $550^{\circ}C$ at the residence time of 1.9 sec. Essential pyrolytic products (bio-oil, biochar, and gas) were produced and their yield was clearly influenced by temperature. The maximum yield of bio-oil was observed to 64.9 wt% (wet basis) at the temperature of $500^{\circ}C$. As pyrolysis temperature increased, the yield of biochar decreased from 36.8 to 11.1 wt%, while gas amount continuously increased from 16.1 to 33.0 wt%. Water content as well as heating value of bio-oils were obviously sensitive to the pyrolysis temperature. The water contents in the bio-oil clearly decreased from 26.1 ($400^{\circ}C$) to 11.9 wt% ($550^{\circ}C$), with increasing the fast pyrolysis temperature, while their higher heating values were increased from 16.6 MJ/kg to 19.3 MJ/kg. According to GC/MS analysis, 22 degradation compounds were identified from the bio-oils and 10 compounds were derived from carbohydrate, 12 compounds were derived from lignin.

Preparation and Characterization of Sodium Caseinate (CasNa)/Transglutaminase (TG)-coated Papers for Packaging (포장용 Sodium Caseinate(CasNa)/Transglutaminase(TG) 코팅지 제조 및 특성 분석)

  • Hwang, Jihyeon;Kim, Dowan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.81-87
    • /
    • 2022
  • Paper is a promising alternative to petroleum-based plastic materials for sustainable packaging applications. However, paper exhibits poor gas and water vapor barrier properties, which restrict its effective application in the packaging industry. To enhance the properties of papers, sodium caseinate (CasNa)/transglutaminase (TG) coating solutions with various TG contents were prepared and coated on the papers. The chemical and morphological structures, mechanical properties, seal strength, and water vapor barrier properties of the coated papers were thoroughly investigated. The paper properties depended significantly on the chemical and morphological structures. Pristine CasNa and CasNa/TG coating solutions were evenly coated on the paper surfaces, without any cracks. The chemical structure of the CasNa/TG coated papers was slightly influenced by TG addition, resulting in increased elongation at break and enhanced water barrier properties. To promote the use of CasNa-coated papers in packaging applications, additional investigations must be performed to prevent gas and moisture permeation and enhance the mechanical strength of these papers via chemical reactions and introduction of organic/inorganic composites.

Effects of Soil pH on Nutritional and Functional Components of Chinese Cabbage (Brassica rapa ssp. campestris) (토양 pH가 배추(Brassica rapa ssp. campestris)의 영양성분과 기능성분에 미치는 영향)

  • Lee, Jo-Eun;Wang, Pingjuan;Kim, Gyung-Yun;Kim, Sung-Han;Park, Su-Hyoung;Hwang, Yong-Soo;Lim, Yong-Pyo;Lee, Eun-Mo;Ham, In-Ki;Jo, Man-Hyun;An, Gil-Hwan
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.353-362
    • /
    • 2010
  • The contents of functional and nutritional components of 13 cultivars of Chinese cabbage (CC, $Brassica$ $rapa$ subspecies $campestris$) were analyzed to compare the effects of soil pH of the greenhouse (pH 6.2) and outdoor (pH 7.6). The CC cultivated on pH 6.2 (CC-6.2) soil contained significantly increased amounts (2-9 fold) of pectin, crude protein, vitamin C and vitamin E compared to the counterpart (CC-7.6). The contents of ash and the minerals (Ca, Fe, Na, and Mn) were also significantly increased in CC-6.2. However, CC-6.2 contained 40-50% lower contents of reducing sugars, cellulose and crude fat than CC-7.6. CC-7.6 contained more glucosinolates, gluconasturtiin (18.33 vs. $1.16nmol{\cdot}g^{-1}$ wet weight) and gluconapin (145 vs. $2nmol{\cdot}g^{-1}$ wet wt), than CC-6.2. In conclusion, CC-6.2 had an improved texture (high pectin and low cellulose) and nutritional value (high in protein, Ca, Fe, vitamin C, and E), whereas the CC-7.6 had better taste (high in reducing sugars) and anticancer functionality (high in glucosinolates).

Effect of Additives on Paper Aging (종이 첨가제가 종이의 노화에 미치는 영향)

  • 윤병호;이명구;최경화
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.25-33
    • /
    • 2002
  • One of the critical problems to preserve books and documents in libraries and archives is the deterioration. Some of previous results showed that the major cause of paper deterioration was the acid-catalyzed hydrolysis of the cellulose in paper fibres and aging rate of acidic paper was faster than that of alkaline paper. Therefore, It is necessary to remove the acid in the paper for reducing the rate of paper deterioration. It has been reported to extend the useful life of acidic paper by three to five times. Recently, It has been recognized the need for an effective method of deacidifying large quantities of books and document. However, in the previous many reports little attention was paid to the effect of paper additives. In this paper, We carried out experiment about the effect of additives on paper aging and the effect of deacidification by the gaseous ethanolamines (monoehtanolamine, diethanolamine, triehtanolamine). In result, it was found that the strength of aging was in the order of the alum+rosin>alum >AKD> control and the rate of deacidification was in the order of the monoethanolamine>diethanolamine>triethanolamine. The treatment with the gaseous ethanolamines caused decreasing of brightness and dropping of fold endurances. However, deacidification by combination treatment of the various gaseous ehtnaolamines prevented from decreasing of brightness and dropping of folding endurances.

  • PDF

Study of Preparation and Characterization of Microcrystalline cellulose from Miscanthus sinensis (미세결정셀룰로오스의 제조를 위한 억새 바이오매스의 처리 및 특성연구)

  • Sung, Yong-Joo;Lee, Young-Ju;Lee, Joon-Woo;Kim, Se-Bin;Park, Gwan-Soo;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.56-63
    • /
    • 2010
  • Microcrystalline cellulose (MCC) was prepared from Miscanthus in this study. Two pulping methods, soda pulping and alkaline sulfite pulping were applied as a pretreatment process. After pulping, two different bleaching processes such as $ClO_2$ treatment followed by $H_2O_2$ treatment and $O_3$ treatment followed by $H_2O_2$ treatment were carried out. Two concentration of $H_2SO_4$, 47% and 57% were applied to the purified Miscanthus cellulose as a acid hydrolysis process to make MCC. The crystallinity index and morphological properties of the produced MCC were evaluated with X-ray diffractometer and scanning electron microscopy. The MCC originated from the soda pulping sample showed the higher crystallinity index than that originated from the alkaline sulfite pulping sample. The two stages of treatmen twith $O_3$ and $H_2O_2$ resulted in the higher purified cellulose products.

Dissolution Characteristics and Regenerated Miscanthus Sinensis Holocellulose Film Prepared by Dissolving the LiBr Solution (LiBr 수용액으로 용해시켜 제조한 거대억새 홀로셀룰로오스 용해 및 재생 필름특성)

  • Yang, Ji-Wook;Kwon, Gu-Joong;Hwang, Kyo-Jung;Hwang, Won-Jung;Hwang, Jae-Hyun;Kim, Dae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.89-97
    • /
    • 2015
  • In this study, dissolution characteristics of 60% LiBr aqueous solution for Miscanthus sinensis holocellulose in accordance with heating time and characteristics of regenerated films were analyzed. Miscanthus sinensis holocellulose was made by peracetic acid method. During the dissolution of 60% LiBr solution for the holocellulose, the dissolution was started from the tip of the cellulose fiber after about 7 minutes, and proceeded as it swollen like a balloon. A lot of Si was identified by analyzing hollocellulose regenerated film through SEM/EDS. Cross section of regenerated film as dissolution time till 40 minutes of dissolution showed multilayered structure and fiber orientation. But after 40 minutes, multilayered structure and fiber orientation was not observed. The crystal structure of the holecellulose was transformed cellulose I into cellulose II. Therefore, dissolution for 20 minutes with 60% LiBr solution in the condition of $190^{\circ}C$ hot plate was shown as an optimum condition to manufacture the holocellulose regenerated film.

Diversity and Antimicrobial Activity of Actinomycetes from Fecal Sample of Rhinoceros Beetle Larvae (장수풍뎅이 유충의 분변에 존재하는 방선균의 다양성 및 항균활성)

  • Lee, Hye-Won;Ahn, Jae-Hyung;Kim, Minwook;Weon, Hang-Yeon;Song, Jaekyeong;Lee, Sung-Jae;Kim, Byung-Yong
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.156-164
    • /
    • 2013
  • Actinomycetes produce diverse secondary metabolites which have the primary importance in medicine, agriculture and food production, and key to this is their ability to interact with other organisms in natural habitats. In this study, we have investigated the taxonomical and functional diversity of actinomycetes in fecal sample of rhinoceros beetle larvae (Allomyrina dichotoma L.) by using culture-dependent and -independent approaches. For the culture-independent approach, the community DNA was extracted from the sample and 16S rRNA genes of actinomycetes were amplified using actinomycetes-specific PCR primers. Thirty-seven clones were classified into 15 genera and 24 species of actinomycetes. For the culture-dependent approach, 53 strains were isolated from larval feces, of which 27 isolates were selected based on morphological characteristics. The isolates were classified into 4 genera and 14 species, and 24 isolates (89%) were identified as the genus Streptomyces. Many of the representative isolates had antimicrobial activities against plant pathogenic fungi and Gram-positive bacteria. In addition, most of the isolates (78%) showed biochemical properties to hydrolyze cellulose and casein. The results demonstrated that diverse and valuable actinomycetes could be isolated from insect fecal samples, indicating that insect guts can be rich sources for novel bioactive compounds.

MCC 입자의 표면화학적 특성에 따른 부유부상 효과

  • 이학래;이진희;허용성;한신호;조중연
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.11a
    • /
    • pp.41-41
    • /
    • 2000
  • 부유부상 공정은 현재 신문고지와 사무용 고지의 탈묵을 통한 신문용지 및 화장지 제조 에 널리 사용되고 있는 고지재활용을 위한 핵심공정이다. 하지만 이들 공정은 갈수록 열악 해지는 국내 고지원료의 품질변화에 따라서 잉크 및 토너의 분리효율이 저하되고 있어 생산 되는 탈묵 펄프의 품질저하, 리젝트 발생량의 증대, 폐수 처리공정의 부하 증가 등 다양한 문제점을 발생시키고 있어 이에 대한 대책의 수립이 시급히 요청되고 있다. 현재와 같이 다양한 형태의 잉크 및 인쇄방식으로 인쇄된 많은 종류의 재활용지가 원료 로 투입되고 있는 경우 탈묵공정의 효율 향상을 위해서는 부유부상 공정에 대한 좀 더 체계 적이고 논리적인 접근이 필요하다. 이러한 문제점을 극복하기 위해 먼저 고지 재활용 공정 의 핵심 단위공정인 부유부상 공정에 관련된 복잡한 문제점을 단순화하여 고상 및 액상의 표면화학적 특성을 평가하고, 이에 따른 부유부상 공정의 효율을 분석하였다. 본 연구에서는 부유부상 공정을 기초과학적 측면에서 구명하기 위해 마이크로 크리스탈린 셀룰로오스(Microcrystalline cellulose: MCC)를 모델 물질로 사용하였고, 친수성 의 표면 특 성을 나타내는 MCC의 표면 특성을 바꾸기 위하여 AKD(alkyl ketene dimer)로 처리비율을 달리하여 사이징 처리하였다. 부유부상 실험에 사용된 MCC는 친수성을 띠는 것과 소수성 을 부여한 것을 구별하고 그 비율을 백색도를 통해 측정하기 위하여 자체적으로 친수성을 가지는 MCC는 세척 견뢰도가 높은 검은색 염료로 염색하였다. 준비된 친수성과 소수성 M MCC의 혼합비율 별로 패드를 작성하여 백색도를 측정함으로써 검량선을 작성하였다. 또한 부유부상 시간에 따른 제거효율을 알아보기 위하여 부유부상 시간별로 각각의 리젝트율과 수율올 측정하고, 리젝트 시료로부터 패드를 제조하여 백색도를 측정하였다. 실험 결과 소수성 MCC의 소수화 정도에 따라서 리젝트율이 증가하였으며, 이를 통해 표 면에 소수성을 띠는 입자는 소수성이 강할수록 부유부상공정에서 제거율이 증가한다는 것을 확인하였다. 부유부상 처리한 MCC로 패드를 제조한 뒤 백색도를 비교한 결과에서도 이를 확인하였다. 한편 리젝트로 함께 제거된 MCC 내에 존재하는 친수성 MCC의 양은 극히 미 세하였다. 또한 부유부상를 실시하는 초기에 상당량의 리젝트가 발생함을 확인하였는데, 이 는 전체 부유부상을 통해 제거되는 양의 45-68%였다. 한편 부유부상이 진행됨에 따라서 리젝트 양의 증가폭이 둔화되는 경향을 나타내었다. 이러한 경향은 MCC의 소수성이 강할 수록 더욱 뚜렷하게 나타났다. 이를 통해 계 내로부터 소수성인 물질이 급속하게 제거됨을 알 수 있었으며 필요 이상의 부유부상 처리는 잉크제거 효율을 높일 수는 있으나 소모되는 시간에 비하여 비효과적임을 알 수 있었다.

  • PDF