DOI QR코드

DOI QR Code

Preparation and Characterization of Sodium Caseinate (CasNa)/Transglutaminase (TG)-coated Papers for Packaging

포장용 Sodium Caseinate(CasNa)/Transglutaminase(TG) 코팅지 제조 및 특성 분석

  • Hwang, Jihyeon (Department of Food Processing & Distribution, College of Life Science, Gangneung-Wonju National University) ;
  • Kim, Dowan (Department of Food Processing & Distribution, College of Life Science, Gangneung-Wonju National University)
  • 황지현 (강릉원주대학교, 생명과학대학, 식품가공유통학과) ;
  • 김도완 (강릉원주대학교, 생명과학대학, 식품가공유통학과)
  • Received : 2022.07.19
  • Accepted : 2022.07.27
  • Published : 2022.08.31

Abstract

Paper is a promising alternative to petroleum-based plastic materials for sustainable packaging applications. However, paper exhibits poor gas and water vapor barrier properties, which restrict its effective application in the packaging industry. To enhance the properties of papers, sodium caseinate (CasNa)/transglutaminase (TG) coating solutions with various TG contents were prepared and coated on the papers. The chemical and morphological structures, mechanical properties, seal strength, and water vapor barrier properties of the coated papers were thoroughly investigated. The paper properties depended significantly on the chemical and morphological structures. Pristine CasNa and CasNa/TG coating solutions were evenly coated on the paper surfaces, without any cracks. The chemical structure of the CasNa/TG coated papers was slightly influenced by TG addition, resulting in increased elongation at break and enhanced water barrier properties. To promote the use of CasNa-coated papers in packaging applications, additional investigations must be performed to prevent gas and moisture permeation and enhance the mechanical strength of these papers via chemical reactions and introduction of organic/inorganic composites.

본 연구에서는 CasNa와 TG를 혼합하여 5종의 CasNa/TG코팅액을 제조하였고, 제조한 코팅액을 종이 표면에 코팅하여 CasNa/TG 코팅지들을 제조하였다. 제조한 코팅지는 TG 함량에 따라 형태학적 특성, 인장강도 및 신장율, 열접착강도, 수증기 투과 특성에 대하여 분석하였다. CasNa/TG 코팅지의 경우 pristine CasNa 코팅지보다 신장율, 수증기 투과 특성이 개선됨을 확인하였다. FTIR 분석 결과, TG 함량이 증가함에 따라 피크의 세기가 변화하는 것을 확인하였다. 또한 SEM 분석 결과, TG 함량이 증가함에 따라 깨짐 없는 균일한 코팅층이 형성된 것을 확인하였다. 이는 TG의 도입으로 인한 CasNa 내 화학적 구조의 변화가 CasNa 기반 코팅액과 코팅지에 영향을 미치는 것으로 판단되며, 이로 인해 신장율, 수증기 투과 특성이 개선되는 것으로 판단된다. CasNa 기반 코팅지의 경우 지속 가능한 포장 소재로서 응용될 가능성이 클 것으로 예상된다. 하지만, 셀룰로오스 나노파이버, 폴리에틸렌 이민 등과 같은 첨가제를 활용하여 CasNa의 화학적·물리적 변화에 관한 추가적인 연구와 포장 소재로 사용하기 위해 요구되는 물성인 산소 및 수분 차단 특성, 내열성 등에 대하여 추가적인 연구가 필요한것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2020년도 강릉원주대학교 신임교원 연구비 지원에 의하여 연구되었음.

References

  1. Khwaldia, K. 2010. Water vapor barrier and mechanical properties of paper-sodium caseinate and paper-sodium caseinate-parraffin wax films. J. Food Biochem. 34: 998-1013. https://doi.org/10.1111/j.1745-4514.2010.00345.x
  2. Hamdani, S. S., Li, Zhao., Sirinakbumrung, N. and Rabnawaz, M. 2020. Zein and PVOH-based bilayer approach for plastic-free, repulpable and biodegradable oil- and water-resistant paper as a replacement for single-use plastics. Ind, Eng. Chem. Res. 59: 17856-17866. https://doi.org/10.1021/acs.iecr.0c02967
  3. Sharma, M., Aguado, R., Murtinho, D., Valente, A.J.M., Sousa, A.P.M.D. and Ferreira, P.J.T. 2020. A review on cationic starch and nanocellulose as paper coating components. Int. J. Biol. Macromol. 162: 578-598. https://doi.org/10.1016/j.ijbiomac.2020.06.131
  4. Christophliemk, H., Johansson, C., Ullsten, H. and Jarnstrom, L. 2017. Oxygen and water vapor transmission rate of starchpoly(vinyl alcohol) barrier coatings for flexible packaging paper. Prog.Org. Coat. 113: 218-224. https://doi.org/10.1016/j.porgcoat.2017.04.019
  5. Pereda, M., Amica, G., Racz, I. and Marcovich, N.E. 2011. Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fiber. J. Food Eng. 103: 76-83. https://doi.org/10.1016/j.jfoodeng.2010.10.001
  6. Lin, H-C., Wang, B-J. and Weng, Y-M. 2020. Development and characterization of sodium caseinate edible films cross-linked genipin. LWT-Food Sci. Technol. 118: 108813. https://doi.org/10.1016/j.lwt.2019.108813
  7. Belyamani, I., Prochazka, F. and Assezat, G. 2014. Production and characterization of sodium caseinate edible films made by brown-film extrusion. J. Food Eng. 121: 39-47. https://doi.org/10.1016/j.jfoodeng.2013.08.019
  8. Belyamani, I., Prochazka, F., Assezat, G. and Debeaufort, F. 2014. Mechanical and barrier properties of extruded film made from sodium and calcium caseinates. Food Packag. Shelf Life. 2: 65-72. https://doi.org/10.1016/j.fpsl.2014.07.003
  9. Khan, M.R., Volpe, S., Valentino, M., Miele, N.A., Cavella, S. and Torrieri, E. 2021. Active casein coatings and films for perishable foods: structural properties and shelf-life extension. coatings. 11: 899. https://doi.org/10.3390/coatings11080899
  10. Chevalier, E., Assezat, G., Prochazka, F. and Oulahal, N. 2018. Development and characterization of a novel edible extruded sheet based on different casein sources and influence of the glycerol concentration. Food Hydrocoll. 75: 182-191. https://doi.org/10.1016/j.foodhyd.2017.08.028
  11. Liu, K., Xu, X., Liu, H., Liu, Z., Zhao, K., Ma, Y. and Zhang, K. 2021. Mechanical properties and water sensitivity of soybean protein isolate film improved by incorporation of sodium caseinate and transglutaminase. Prog. Org. Coat. 153: 106154. https://doi.org/10.1016/j.porgcoat.2021.106154
  12. Picchio, M.L., Linck, Y.G., Monti, G.A., Gugliotta, L.M., Minari, R.J. and Igarzabal, C.I.A. 2018. Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocoll. 84: 424-434. https://doi.org/10.1016/j.foodhyd.2018.06.028
  13. Schimid, M., Sangerlaub, S., Wege, L. and Stabler, A. 2014. Properties of transglutaminase crosslinked whey protein isolate coating and cast films. Packag. Technol. Sci. 27: 799-817. https://doi.org/10.1002/pts.2071
  14. Yilmaz, K., Turhan, S., Saricaoglu, F.T. and Tural, S. 2020. Improvement of physicochemical, mechanical, thermal and surface properties of anchovy by-product protein films by addition of transglutaminase, and the correlation between secondary structure and mechanical properties. Food Packag. Shelf Life. 24: 100483. https://doi.org/10.1016/j.fpsl.2020.100483
  15. KS M ISO 1924-2:2008, Paper and board-Determination of tensile properties-Part 2: Constant rate of elongation method (20 mm/min).
  16. KS M ISO 1924-2:2008, Paper and board- Determination of tensile properties-Part 2: Constant rate of elongation method (20 mm/min).
  17. Oh, S. Y., Yoo, D.I., Shin, Y. and Seo, Gon. 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 340: 417-428. https://doi.org/10.1016/j.carres.2004.11.027
  18. Cheng, S., Wang, W., Li, Yu., Gao, G., Zhang, K., Zhou, J. and Wu, Z. 2019. Cross-linking and film-forming properties of transglutaminase-modified collagen fibers tailored by denaturation temperature. Food Chem. 271: 527-535. https://doi.org/10.1016/j.foodchem.2018.07.223
  19. Khwaldia, K., Basta, A.H., Aloui, H. and El-Saied-H. 2014. Chitosan-caseinate bilayer coating for paper packaging materials. Carbohydr. Polym. 99: 508-516. https://doi.org/10.1016/j.carbpol.2013.08.086
  20. Su, J-F., Yuan, X-Y., Huang, Z., Wang, X-Y., Lu, X-Z., Zhang, L-D. and Wang, S-B. 2012. Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: color, transparency and heat-sealing ability. Mater. Sci. Eng. C. 32: 40-46. https://doi.org/10.1016/j.msec.2011.09.009
  21. Miwa, N. 2020. Innovation in the food industry using microbial transglutaminase: keys to success and future prospects. Anal. Biochem. 597: 113638. https://doi.org/10.1016/j.ab.2020.113638
  22. Huang, X., Luo, X., Liu, L., Dong, K., Yang, R., Lin, C., Song, H., Li, S. and Huang, Q. 2020. Formation mechanism of egg white protein/ĸ-Carrageenan composite film and its application to oil packaging. Food Hydrocoll. 105: 105780. https://doi.org/10.1016/j.foodhyd.2020.105780