Acknowledgement
이 논문은 2020년도 강릉원주대학교 신임교원 연구비 지원에 의하여 연구되었음.
References
- Khwaldia, K. 2010. Water vapor barrier and mechanical properties of paper-sodium caseinate and paper-sodium caseinate-parraffin wax films. J. Food Biochem. 34: 998-1013. https://doi.org/10.1111/j.1745-4514.2010.00345.x
- Hamdani, S. S., Li, Zhao., Sirinakbumrung, N. and Rabnawaz, M. 2020. Zein and PVOH-based bilayer approach for plastic-free, repulpable and biodegradable oil- and water-resistant paper as a replacement for single-use plastics. Ind, Eng. Chem. Res. 59: 17856-17866. https://doi.org/10.1021/acs.iecr.0c02967
- Sharma, M., Aguado, R., Murtinho, D., Valente, A.J.M., Sousa, A.P.M.D. and Ferreira, P.J.T. 2020. A review on cationic starch and nanocellulose as paper coating components. Int. J. Biol. Macromol. 162: 578-598. https://doi.org/10.1016/j.ijbiomac.2020.06.131
- Christophliemk, H., Johansson, C., Ullsten, H. and Jarnstrom, L. 2017. Oxygen and water vapor transmission rate of starchpoly(vinyl alcohol) barrier coatings for flexible packaging paper. Prog.Org. Coat. 113: 218-224. https://doi.org/10.1016/j.porgcoat.2017.04.019
- Pereda, M., Amica, G., Racz, I. and Marcovich, N.E. 2011. Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fiber. J. Food Eng. 103: 76-83. https://doi.org/10.1016/j.jfoodeng.2010.10.001
- Lin, H-C., Wang, B-J. and Weng, Y-M. 2020. Development and characterization of sodium caseinate edible films cross-linked genipin. LWT-Food Sci. Technol. 118: 108813. https://doi.org/10.1016/j.lwt.2019.108813
- Belyamani, I., Prochazka, F. and Assezat, G. 2014. Production and characterization of sodium caseinate edible films made by brown-film extrusion. J. Food Eng. 121: 39-47. https://doi.org/10.1016/j.jfoodeng.2013.08.019
- Belyamani, I., Prochazka, F., Assezat, G. and Debeaufort, F. 2014. Mechanical and barrier properties of extruded film made from sodium and calcium caseinates. Food Packag. Shelf Life. 2: 65-72. https://doi.org/10.1016/j.fpsl.2014.07.003
- Khan, M.R., Volpe, S., Valentino, M., Miele, N.A., Cavella, S. and Torrieri, E. 2021. Active casein coatings and films for perishable foods: structural properties and shelf-life extension. coatings. 11: 899. https://doi.org/10.3390/coatings11080899
- Chevalier, E., Assezat, G., Prochazka, F. and Oulahal, N. 2018. Development and characterization of a novel edible extruded sheet based on different casein sources and influence of the glycerol concentration. Food Hydrocoll. 75: 182-191. https://doi.org/10.1016/j.foodhyd.2017.08.028
- Liu, K., Xu, X., Liu, H., Liu, Z., Zhao, K., Ma, Y. and Zhang, K. 2021. Mechanical properties and water sensitivity of soybean protein isolate film improved by incorporation of sodium caseinate and transglutaminase. Prog. Org. Coat. 153: 106154. https://doi.org/10.1016/j.porgcoat.2021.106154
- Picchio, M.L., Linck, Y.G., Monti, G.A., Gugliotta, L.M., Minari, R.J. and Igarzabal, C.I.A. 2018. Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocoll. 84: 424-434. https://doi.org/10.1016/j.foodhyd.2018.06.028
- Schimid, M., Sangerlaub, S., Wege, L. and Stabler, A. 2014. Properties of transglutaminase crosslinked whey protein isolate coating and cast films. Packag. Technol. Sci. 27: 799-817. https://doi.org/10.1002/pts.2071
- Yilmaz, K., Turhan, S., Saricaoglu, F.T. and Tural, S. 2020. Improvement of physicochemical, mechanical, thermal and surface properties of anchovy by-product protein films by addition of transglutaminase, and the correlation between secondary structure and mechanical properties. Food Packag. Shelf Life. 24: 100483. https://doi.org/10.1016/j.fpsl.2020.100483
- KS M ISO 1924-2:2008, Paper and board-Determination of tensile properties-Part 2: Constant rate of elongation method (20 mm/min).
- KS M ISO 1924-2:2008, Paper and board- Determination of tensile properties-Part 2: Constant rate of elongation method (20 mm/min).
- Oh, S. Y., Yoo, D.I., Shin, Y. and Seo, Gon. 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 340: 417-428. https://doi.org/10.1016/j.carres.2004.11.027
- Cheng, S., Wang, W., Li, Yu., Gao, G., Zhang, K., Zhou, J. and Wu, Z. 2019. Cross-linking and film-forming properties of transglutaminase-modified collagen fibers tailored by denaturation temperature. Food Chem. 271: 527-535. https://doi.org/10.1016/j.foodchem.2018.07.223
- Khwaldia, K., Basta, A.H., Aloui, H. and El-Saied-H. 2014. Chitosan-caseinate bilayer coating for paper packaging materials. Carbohydr. Polym. 99: 508-516. https://doi.org/10.1016/j.carbpol.2013.08.086
- Su, J-F., Yuan, X-Y., Huang, Z., Wang, X-Y., Lu, X-Z., Zhang, L-D. and Wang, S-B. 2012. Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: color, transparency and heat-sealing ability. Mater. Sci. Eng. C. 32: 40-46. https://doi.org/10.1016/j.msec.2011.09.009
- Miwa, N. 2020. Innovation in the food industry using microbial transglutaminase: keys to success and future prospects. Anal. Biochem. 597: 113638. https://doi.org/10.1016/j.ab.2020.113638
- Huang, X., Luo, X., Liu, L., Dong, K., Yang, R., Lin, C., Song, H., Li, S. and Huang, Q. 2020. Formation mechanism of egg white protein/ĸ-Carrageenan composite film and its application to oil packaging. Food Hydrocoll. 105: 105780. https://doi.org/10.1016/j.foodhyd.2020.105780