• Title/Summary/Keyword: coating

Search Result 8,973, Processing Time 0.03 seconds

Computer Simulation of Coating Behavior Including Air for Various Coater Geometries and Operational Conditions (코팅 공정에서 공기를 고려한 코터형상 및 운전조건에 따른 코팅현상 해석)

  • Kim, H.Y.;Lyu, M.Y.;Choi, J.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.156-159
    • /
    • 2009
  • Slot coating has been wide spread in photo-resist coating on the glass for liquid crystal display. Die in slot coater consists of manifold and land. Material comes in inlet of the die and flow into the manifold and then flow out through the land. The coating thickness variations along the die length depend upon inside of die design such as manifold and die land. However the coating thickness variations along the moving direction(coating direction) of the coater depend upon the operational conditions of coater as well as die lip design. The coating behaviors including atmospheric air have been investigated in this study. Die geometries considered in this study were nozzle gap and length of the die lip. Coating gap and coating speed were the variables fur coating operational conditions. When the nozzle gap and length of die lip increased climbing effect of PR on the downstream die lip was reduced. Subsequently uniformity of coating thickness improved. Uniformity of coating thickness also enhanced as coating gap and coater speed increased. The uniformity of coating gap was related to the velocity vector distributions on the coating surface.

Numerical Study of Secondary Coating Die Geometry Effects on High Speed Optical Glass Fiber Coating Process (광섬유 2차 코팅다이 형상 변화에 따른 유리섬유 고속 코팅공정 영향성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.12-18
    • /
    • 2019
  • The protective double layer polymer coatings on silica optical fibers are realized by wet-on-wet liquid coating process and they play an important role in final quality of mass produced optical fibers. This numerical study aims to analyze the effects of secondary coating die design parameters by employing two dimensional axisymmetric model of coating cup and coating die geometry and computational fluid dynamics simulations which include temperature dependent viscosity of polymer coating liquids and viscous dissipation heating. Under high speed fiber drawing conditions and pressurized coating liquid supply, the effects of converging die angle are investigated in order to appreciate the change of coating liquid flow patterns such as flow recirculation zone near coating die as well as primary and secondary coating layer thicknesses. The auxiliary coating die to converging coating die is also tested and the results find that this concept is advantageous in achieving stable double layer coatings on silica glass fiber.

Rheological perspectives of industrial coating process

  • Kim, Sun-Hyung;Kim, Jae-Hong;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.83-89
    • /
    • 2009
  • Coating process plays an important role in information technology such as display, battery, chip manufacturing and so on. However, due to complexity of coating material and fast deformation of the coating flow, the process is hard to control and it is difficult to maintain the desired quality of the products. Moreover, it is hard to measure the coating process because of severe processing conditions such as high drying temperature, high deformation coating flow, and sensitivity to the processing variables etc. In this article, the coating process is to be re-illuminated from the rheological perspectives. The practical approach to analyze and quantify the coating process is discussed with respect to coating materials, coating flow and drying process. The ideas on the rheology control of coating materials, pressure and wet thickness control in patch coating process, and stress measurement during drying process will be discussed.

Characterization of Coating Layer formed on the Metal Surface by Calorizing (Calorizing(Aluminizing) 코팅 층의 표면특성 고찰)

  • 하진욱
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.49-54
    • /
    • 2000
  • The effect of Particle size of coating Powder and coating temperature on the Properties of coating layer was studied by calorizing(or aluminizing). The surface properties of coating layer were fully characterized, using SEM and EDXS. Coating powders were separated according to the particle size by 3 steps and the coating temperature was varied from $950^{\circ}C$ to $980^{\circ}C$. Calorizing with pack cementation method carried under Ar atmosphere for 5 hrs. Results show that the thickness and Al content of coating layer increased as the size of coating powder decreased and coating temperature increased. And pores formed on the coating layer reduced and homogeneity of coating layer increased with smaller particle size of coating powder.

  • PDF

Analysis of Coating Flow Characteristics in Wet-on-Wet Optical Fiber Liquid Coating Process (광섬유 WOW 액상코팅 공정의 코팅액 유동특성 해석연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.91-96
    • /
    • 2017
  • In this computational study of optical fiber manufacturing, WOW (wet-on-wet) double coating process on freshly drawn glass fiber has been numerical modelled and simulated using a simplified geometry of typical optical fiber coating apparatus. The numerical domain includes primary and secondary coating dies along with secondary coating cup and the interface between primary and secondary coating liquids are investigated using level set method. Coating liquid viscosity is an important parameter and its dependence on temperature is also considered. Since there would be possibility for pressure and temperature of primary coating liquid to be increased substantially at high fiber drawing speed, the effects of increased pressure and temperature of primary coating liquid are examined on flow patterns of coating liquids in secondary coating cup. In case that both pressure and temperature of primary coating liquid are high enough, liquid interface becomes noticeably unstable and this flow instability could adversely affect the uniform coatings and final quality of produced optical fiber.

  • PDF

Studies on Polymer Coating in Soybean Seeds 1. Difference of Electrolyte Leaching of Polymeric Coating Soybean Seed (대두종자의 polymer coating 연구 1. polymer coating 종자의 conductivity 차이)

  • 이성춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.2
    • /
    • pp.158-164
    • /
    • 1994
  • These experiment were conducted to evaluate the environmentally acceptable polymers, and 10 polymers were used in these study, and to investigate conductivity, germination percentage, water uptake of polymeric coating soybean seed. The conductivity of polymeric coating seed is higher than that of none coating seed and the highest conductivity was obtained with waterlock coating seed among the 10 polymer coating seed. As the soaking time was long, the conductivity was increased. The conductivity of large seed was higher than that of small seed, and that of long period storage seed was higher than that of short period storage seed. The effects of seed coating polymers on uptake water were various, and daran 8600 inhibited uptake water of low quality seed. The waterlock, captan, klucel and sacrust was rised germination percentage, and daran 8600 was declined germination percentage, and the effect of coating polymers on germination percentage of low quality seed was higher than that of high quality seed.

  • PDF

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

코팅 부동화 측정장치개발 및 부동화시간에 관한 연구

  • ;D. W. Bousfield
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.42-42
    • /
    • 2001
  • The rate of coating consolidation influences the operation of several coating methods and the final quality of the coating layer. The rate of coating consolidation is characterized with a dynamic gloss meter at short times for a thin coating layer applied to the base sheet of interest. During the coating consolidation process, the laser gloss meter response curve exhibits two critical turning points that indicate the two coating immobilization points defined by the traditional methods. Five base sheets with several different coating suspensions are characterized. A model is proposed to estimate the rate of consolidation based on physical properties of the coating suspension, the base paper, and the liquid phase of the coating. The paper properties, especially the contact angle, are found to be an important factor in determining rate of consolidation. The model predicts the correct trends for the different coating suspensions and base sheets. The test method, along the model, can be used to determine the filtercake resistance of the coating layer for a thin and rapidly formed filtercake.

  • PDF

NUMERICAL SIMULATION OF THE EFFECTS OF RESIN SUPPLY TEMPERATURE ON OPTICAL FIBER COATING THICKNESS (피복재 공급온도가 광섬유 피복두께에 미치는 영향에 대한 전산유동해석)

  • Choi, J.S.;Kwak, H.S.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96-99
    • /
    • 2011
  • Fiber coatings are essential in optical fiber manufacturing, since they provide the protective layers from the surface damages and the adequate fiber strength. Flow and temperature fields of coating liquid in a fiber coating applicator are numerically investigated by using a commercial CFD software. The main focus of this computational study is on the thermal effects by viscous dissipation and the effects of coating supply temperature on the final fiber coating thickness. The numerical results reveal that the thermal effects play a major role in the high-speed optical fiber coating process and give substantial influences on the determination of coating thickness. Changing the supply temperature of coating liquid is found to relieve the radial variation of coating liquid viscosity in the coating die and it can be an effective way to control the fiber coating thickness.

  • PDF

The Effect of Particle Size of Coating Powder and Coating Temperature on the Thickness of Coating Layer Formed on Metal Surface (Calorizing 처리에서 코팅분말의 입자크기 및 코팅온도가 금속표면에 형성된 코팅층의 두께에 미치는 영향)

  • Ha, Jin-Wook;Park, Hai-Woong
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1061-1065
    • /
    • 1999
  • The effect of particle size of coating powder and coating temperature on the thickness of coating layer formed on metal surface was studied by using XRD, SEM and EDXS. Coating powder was separated according to particle size by 3 steps and coating temperatures were varied from $950^{\circ}C$ to $980^{\circ}C$. Calorizing carried out at air and Ar conditions for 5 hrs, respectively. XRD result show that $Al_2O_3$ and AlN were formed during calorizing at air condition. The thickness and Al content of coating layer increased as the particle size of coating powder decreased and coating temperature increased.

  • PDF