DOI QR코드

DOI QR Code

Investigation of Physicochemical Properties of Bio-oils Produced from Pitch Pine (Pinus rigida) at Various Temperatures

열분해 온도에 따른 리기다소나무 바이오오일의 물리·화학적 특성 평가

  • 김태승 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김재영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 오신영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 황혜원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2012.03.02
  • Accepted : 2012.05.21
  • Published : 2012.05.25

Abstract

In this study, fast pyrolysis of pitch pine (Pinus rigida) was performed in a fluidized bed reactor under the temperature ranges between 400 and $550^{\circ}C$ at the residence time of 1.9 sec. Essential pyrolytic products (bio-oil, biochar, and gas) were produced and their yield was clearly influenced by temperature. The maximum yield of bio-oil was observed to 64.9 wt% (wet basis) at the temperature of $500^{\circ}C$. As pyrolysis temperature increased, the yield of biochar decreased from 36.8 to 11.1 wt%, while gas amount continuously increased from 16.1 to 33.0 wt%. Water content as well as heating value of bio-oils were obviously sensitive to the pyrolysis temperature. The water contents in the bio-oil clearly decreased from 26.1 ($400^{\circ}C$) to 11.9 wt% ($550^{\circ}C$), with increasing the fast pyrolysis temperature, while their higher heating values were increased from 16.6 MJ/kg to 19.3 MJ/kg. According to GC/MS analysis, 22 degradation compounds were identified from the bio-oils and 10 compounds were derived from carbohydrate, 12 compounds were derived from lignin.

본 연구에서는 유동형 열분해 장치를 이용하여 리기다소나무를 $400{\sim}550^{\circ}C$ 범위에서 체류시간 1.9초 동안 급속 열분해하여 바이오오일, 탄, 가스를 각각 생산하였다. 열분해 생산물의 수율은 열분해 온도에 따라 크게 영향 받았다. 바이오오일의 수율은 $500^{\circ}C$ 조건에서 가장 높았으며, 기건 바이오매스 대비 64.9 wt%로 나타났다. 열분해 온도가 높아질수록 탄 수율은 36.8 wt%에서 11.2 wt%로 급격히 감소한 반면 가스 생성량은 16.1 wt%에서 33.0 wt%로 증가하였다. 바이오오일의 수분함량과 발열량은 열분해 온도에 매우 민감한 것으로 나타났으며, 온도가 높아질수록 수분함량은 26.1 wt%에서 11.9 wt%로 감소한 반면, 발열량은 약 16.6 MJ/kg에서 19.3 MJ/kg로 증가하였다. 모든 온도조건에서 생산된 바이오오일에는 공통적으로 22종의 화합물이 확인되었고, 이들은 셀룰로오스 유래 물질 10종과 리그닌 유래 물질 12종으로 분류하였다.

Keywords

References

  1. Bridgwater, A. 2004. Biomass fast pyrolysis. Thermal Science 8(2): 21-50. https://doi.org/10.2298/TSCI0402021B
  2. Bridgwater, A. 2003. Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal 91: 87-102. https://doi.org/10.1016/S1385-8947(02)00142-0
  3. Bridgwater, A., S. Czernik, J. Diebold, and D. Meier. 1999a. Fast pyrolysis of biomass: a handbook, vol.2. CPL: Press, Berkshire.
  4. Bridgwater, A., D. Meier, and D. Radlein. 1999b. An overview of fast pyrolysis of biomass. Organic Geochemistry 30(12): 1479-1493. https://doi.org/10.1016/S0146-6380(99)00120-5
  5. Bridgwater, A. and G. Peacocke. 2000. Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews 4(1): 1-73. https://doi.org/10.1016/S1364-0321(99)00007-6
  6. Conti, L., G. Scano, and J. Boufala. 1994. Bio-oils from arid land plants: flash pyrolysis of EUPHORBIA CHARACIAS bagasse. Biomass and Bioenergy 7(1-6): 291-296. https://doi.org/10.1016/0961-9534(94)00071-Z
  7. Czernik, S. and A. Bridgwater. 2004. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 18(2): 590-598. https://doi.org/10.1021/ef034067u
  8. Demirbas, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy conversion and management 41(6): 633-646. https://doi.org/10.1016/S0196-8904(99)00130-2
  9. Demirbas, A. 1997. Calculation of higher heating values of biomass fuels. Fuel 76(5): 431-434. https://doi.org/10.1016/S0016-2361(97)85520-2
  10. Ji-lu, Z. 2007. Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. Journal of Analytical and Applied Pyrolysis 80(1): 30-35. https://doi.org/10.1016/j.jaap.2006.12.030
  11. Kim, K. H., I. Y. Eom, S. M. Lee, D. H. Choi, I.-G. Choi, and J. W. Choi. 2011. Investigation of physicochemical properties of biooils produced from yellow poplar wood (Liriodendron tulipifera) at various temperatures and residence times. Journal of Analytical and Applied Pyrolysis, 92(1): 2-9. https://doi.org/10.1016/j.jaap.2011.04.002
  12. Leung, D. Y. C., X. Wu, and M. Leung. 2010. A review on biodiesel production using catalyzed transesterification. Applied Energy 87(4): 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006
  13. Mohan, D., C. U. Pittman., Jr., and P. H. Steele, 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20(3): 848-889. https://doi.org/10.1021/ef0502397
  14. Ravi, P., H. Alex, and K. B. Inder. 1998, Net energy and gross pollution from bioethanol production in India. Fuel 77(14): 1629-1633. https://doi.org/10.1016/S0016-2361(98)00085-4
  15. Ringer, M., V. Putsche, and J. Scahill, Large-scale pyrolysis oil production: A technology assessment and economic analysis. National Renewable Energy Laboratory (NREL), Golden, CO., 2006.
  16. Scott, D. S., P. Majerski, J. Piskorz, and D. Radlein, 1999. A second look at fast pyrolysis of biomass - the RTI process. Journal of Analytical and Applied Pyrolysis 51(1-2): 23-37. https://doi.org/10.1016/S0165-2370(99)00006-6
  17. Uzun, B. B., A. E. Putun, and E. Putun. 2006. Fast pyrolysis of soybean cake: Product yields and compositions. Bioresource Technology 97(4): 569-576. https://doi.org/10.1016/j.biortech.2005.03.026
  18. Xu, R., L. Ferrante, C. Briens, and F. Berruti. 2009. Flash pyrolysis of grape residues into biofuel in a bubbling fluid bed. Journal of Analytical and Applied Pyrolysis 86(1): 58-65. https://doi.org/10.1016/j.jaap.2009.04.005

Cited by

  1. Quantitative analysis of 5-HMF produced from fructose vol.45, pp.1, 2013, https://doi.org/10.7584/ktappi.2013.45.1.027