DOI QR코드

DOI QR Code

Diversity and Antimicrobial Activity of Actinomycetes from Fecal Sample of Rhinoceros Beetle Larvae

장수풍뎅이 유충의 분변에 존재하는 방선균의 다양성 및 항균활성

  • Lee, Hye-Won (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Ahn, Jae-Hyung (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Kim, Minwook (Department of Biology, Kyung Hee University) ;
  • Weon, Hang-Yeon (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Song, Jaekyeong (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA) ;
  • Lee, Sung-Jae (Department of Biology, Kyung Hee University) ;
  • Kim, Byung-Yong (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
  • 이혜원 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 안재형 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김민욱 (경희대학교 생물학과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 송재경 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 이성재 (경희대학교 생물학과) ;
  • 김병용 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2013.06.11
  • Accepted : 2013.06.25
  • Published : 2013.06.30

Abstract

Actinomycetes produce diverse secondary metabolites which have the primary importance in medicine, agriculture and food production, and key to this is their ability to interact with other organisms in natural habitats. In this study, we have investigated the taxonomical and functional diversity of actinomycetes in fecal sample of rhinoceros beetle larvae (Allomyrina dichotoma L.) by using culture-dependent and -independent approaches. For the culture-independent approach, the community DNA was extracted from the sample and 16S rRNA genes of actinomycetes were amplified using actinomycetes-specific PCR primers. Thirty-seven clones were classified into 15 genera and 24 species of actinomycetes. For the culture-dependent approach, 53 strains were isolated from larval feces, of which 27 isolates were selected based on morphological characteristics. The isolates were classified into 4 genera and 14 species, and 24 isolates (89%) were identified as the genus Streptomyces. Many of the representative isolates had antimicrobial activities against plant pathogenic fungi and Gram-positive bacteria. In addition, most of the isolates (78%) showed biochemical properties to hydrolyze cellulose and casein. The results demonstrated that diverse and valuable actinomycetes could be isolated from insect fecal samples, indicating that insect guts can be rich sources for novel bioactive compounds.

방선균은 의약, 농업 및 식품 생산 등에 유용하게 사용되는 이차대사물질을 생산하는 미생물 자원으로 자연환경 내에서 많은 생물들과 긴밀한 상호작용을 유지하고 있다. 본 연구에서는 장수풍뎅이 유충의 분변에 존재하는 방선균의 다양성과 기능성을 조사하기 위해서 비배양적 접근과 배양적 방법으로 실험을 수행하였다. 먼저 시료로부터 직접 추출한 community DNA에서 방선균-특이 primer를 이용하여 방선균의 16S rRNA 유전자를 PCR로 증폭, 클로닝한 후에 각 clone에 삽입된 염기서열을 분석하였다. 총 37개의 염기서열을 얻었으며 계통분류학적 분석을 수행한 결과, 15속 24종으로 분류되었다. 아울러 53개의 방선균 균주를 장수풍뎅이 유충 분변으로부터 분리하였다. 형태학적 특징을 비교하여 최종적으로 27개의 균주를 선발하여 다양성, 항균활성 및 생화학적 특징을 검정하였다. 분리된 균주들은 4속 14종으로 분류되었으며, 24균주(89%)는 Streptomyces 속으로 분류되었다. 대다수의 균주들이 식물병원성 곰팡이와 그람양성 세균에 대해 길항 효과를 보였다. 또한 많은 균주들이 셀룰로오스와 카제인을 분해하는 생화학적 특징을 보였다. 본 연구를 통해, 장수풍뎅이 유충의 분변 시료로부터 다양한 방선균이 분리될 수 있으며, 분리된 균주들은 다양한 항균효과 및 효소활성을 지니고 있다는 것을 확인하였다. 결론적으로 본 연구는 장수풍뎅이와 같은 곤충의 장과 분변은 다양한 방선균의 서식처이며, 이곳에서 유용한 생리활성 물질을 발견할 수 있다는 것을 제시한다.

Keywords

References

  1. Antony-Babu, S., Stach, J., and Goodfellow, M. 2010. Computer-assisted numerical analysis of colour-group data for dereplication of streptomycetes for bioprospecting and ecological purposes. Antonie van Leeuwenhoek 97, 231-239. https://doi.org/10.1007/s10482-009-9404-x
  2. Bérdy, J. 2005. Bioactive microbial metabolites: A personal view. J. Antibiot. (Tokyo). 58, 1-26. https://doi.org/10.1038/ja.2005.1
  3. Cazemier, A.E., Verdoes, J.C., Reubsaet, F.A., Hackstein, J.H., van der Drift, C., and Op den Camp, H.J. 2003. Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle pachnoda marginata. Antonie van Leeuwenhoek 83, 135-148. https://doi.org/10.1023/A:1023325817663
  4. Chaiyaso, T., Kuntiya, A., Techapun, C., Leksawasdi, N., Seesuriyachan, P., and Hanmoungjai, P. 2011. Optimization of cellulase-free xylanase production by thermophilic Streptomyces thermovulgaris TISTR1948 through plackett-burman and response surface methodological approaches. Biosci. Biotechnol. Biochem. 75, 531-537. https://doi.org/10.1271/bbb.100756
  5. Chen, J., Abawi, G.S., and Zuckerman, B.M. 2000. Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J. Nematol. 32, 70-77.
  6. Chung, M.Y., Kwon, E.Y., Hwang, J.S., Goo, T.W., and Yun, E.Y. 2013. Establishment of food processing methods for larvae of Allomyrina dichotoma, Korean horn beetle. J. Life Sci. 23, 426-431. https://doi.org/10.5352/JLS.2013.23.3.426
  7. Esnard, J., Potter, T.L., and Zuckerman, B.M. 1995. Streptomyces costaricanus sp. nov., isolated from nematode-suppressive soil. Int. J. Syst. Bacteriol. 45, 775-779. https://doi.org/10.1099/00207713-45-4-775
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.2307/2408678
  9. Goodfellow, M. 2010. Selective isolation of Actinobacteria, pp. 13-27. In Baltz, R.H., Demain, A.L., and Davies, J.E. (eds.), Manual of industrial microbiology and biotechnology ASM Press, Washington, D.C., USA.
  10. Goodfellow, M., Lacey, J., Athalye, M., Embley, T.M., and Bowen, T. 1989. Saccharopolyspora gregorii and Saccharopolyspora hordei: Two new actinomycete species from fodder. J. Gen. Microbiol. 135, 2125-2139.
  11. Goodfellow, M., Maldonado, L.A., and Quintana, E.T. 2005. Reclassification of Nonomuraea flexuosa (meyer 1989) Zhang et al. 1998 as Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 55, 1979-1983. https://doi.org/10.1099/ijs.0.63559-0
  12. Hayakawa, M. 2008. Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetol. 22, 12-19. https://doi.org/10.3209/saj.SAJ220103
  13. Hopwood, D.A. 2006. Soil to genomics: The Streptomyces chromosome. Annu. Rev. Genet. 40, 1-23. https://doi.org/10.1146/annurev.genet.40.110405.090639
  14. Jog, R., Nareshkumar, G., and Rajkumar, S. 2012. Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J. Appl. Microbiol. 113, 1154-1164. https://doi.org/10.1111/j.1365-2672.2012.05417.x
  15. Kikuchi, Y. 2009. Endosymbiotic bacteria in insects: Their diversity and culturability. Microbes Environ. 24, 195-204. https://doi.org/10.1264/jsme2.ME09140S
  16. Kim, J.I. 1998. Insect's life in Korea (III) Coleoptera., p. 55. Korea University, Seoul, Korea.
  17. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S., and Chun, J. 2012. Introducing eztaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  18. Kim, H.G. and Kang, K.H. 2005. Bionomical characteristic of Allomyrina dichotoma. Korean J. Appl. Entomol. 44, 207-212.
  19. Kim, B.Y., Kshetrimayum, J.D., and Goodfellow, M. 2011. Detection, selective isolation and characterisation of Dactylosporangium strains from diverse environmental samples. Syst. Appl. Microbiol. 34, 606-616. https://doi.org/10.1016/j.syapm.2011.03.008
  20. Kim, S.H., Kwon, S.H., Park, S.H., Lee, J.K., Bang, H.S., Nam, S.J., Kwon, H.C., Shin, J., and Oh, D.C. 2013. Tripartin, a histone demethylase inhibitor from a bacterium associated with a dung beetle larva. Org. Lett. 15, 1834-1837. https://doi.org/10.1021/ol4004417
  21. Kim, B., Sahin, N., Minnikin, D.E., Zakrzewska-Czerwinska, J., Mordarski, M., and Goodfellow, M. 1999. Classification of thermophilic streptomycetes, including the description of Streptomyces thermoalcalitolerans sp. nov. Int. J. Syst. Bacteriol. 49 Pt 1, 7-17. https://doi.org/10.1099/00207713-49-1-7
  22. Kim, B.Y., Zucchi, T.D., Fiedler, H.-P., and Goodfellow, M. 2012. Streptomyces staurosporininus sp. nov., a staurosporine-producing actinomycete. Int. J. Syst. Evol. Microbiol. 62, 966-970. https://doi.org/10.1099/ijs.0.031922-0
  23. Kinkel, L.L., Schlatter, D.C., Bakker, M.G., and Arenz, B.E. 2012. Streptomyces competition and co-evolution in relation to plant disease suppression. Res. Microbiol. 163, 490-499. https://doi.org/10.1016/j.resmic.2012.07.005
  24. Mackay, S.J. 1977. Improved enumeration of Streptomyces spp. On a starch casein salt medium. Appl. Environ. Microbiol. 33, 227-230.
  25. Mccarthy, A.J. and Williams, S.T. 1992. Actinomycetes as agents of biodegradation in the environment - a review. Gene 115, 189-192. https://doi.org/10.1016/0378-1119(92)90558-7
  26. Morales, D.K., Ocampo, W., and Zambrano, M.M. 2007. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. J. Appl. Microbiol. 103, 2704-2712. https://doi.org/10.1111/j.1365-2672.2007.03510.x
  27. O'Brien, J. and Wright, G.D. 2011. An ecological perspective of microbial secondary metabolism. Curr. Opin. Biotechnol. 22, 552-558. https://doi.org/10.1016/j.copbio.2011.03.010
  28. Oh, D.C., Poulsen, M., Currie, C.R., and Clardy, J. 2009. Dentigerumycin: A bacterial mediator of an ant-fungus symbiosis. Nat. Chem. Biol. 5, 391-393. https://doi.org/10.1038/nchembio.159
  29. Olano, C., Méndez, C., and Salas, J.A. 2009. Antitumor compounds from marine actinomycetes. Mar. Drugs 7, 210-248. https://doi.org/10.3390/md7020210
  30. Park, D.S., Foottit, R., Maw, E., and Hebert, P.D. 2011. Barcoding bugs: DNA-based identification of the true bugs (insecta: Hemiptera: Heteroptera). PLoS ONE 6, e18749. https://doi.org/10.1371/journal.pone.0018749
  31. Puhl, A.A., Selinger, L.B., McAllister, T.A., and Inglis, G.D. 2009. Actinomadura keratinilytica sp. nov., a keratin-degrading actinobacterium isolated from bovine manure compost. Int. J. Syst. Evol. Microbiol. 59, 828-834. https://doi.org/10.1099/ijs.0.003640-0
  32. Rivas, R., Sanchez, M., Trujillo, M.E., Zurdo-Pineiro, J.L., Mateos, P.F., Martinez-Molina, E., and Velazquez, E. 2003. Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). Int. J. Syst. Evol. Microbiol. 53, 99-103. https://doi.org/10.1099/ijs.0.02207-0
  33. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406 -425.
  34. Schafer, J., Jackel, U., and Kampfer, P. 2010. Development of a new pcr primer system for selective amplification of actinobacteria. FEMS Microbiol. Lett. 311, 103-112. https://doi.org/10.1111/j.1574-6968.2010.02069.x
  35. Scott, J.J., Oh, D.C., Yuceer, M.C., Klepzig, K.D., Clardy, J., and Currie, C.R. 2008. Bacterial protection of beetle-fungus mutualism. Science 322, 63. https://doi.org/10.1126/science.1160423
  36. Seipke, R.F., Barke, J., Brearley, C., Hill, L., Yu, D.W., Goss, R.J., and Hutchings, M.I. 2011. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS ONE 6, e22028. https://doi.org/10.1371/journal.pone.0022028
  37. Seipke, R.F., Kaltenpoth, M., and Hutchings, M.I. 2012. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiol. Rev. 36, 862-876. https://doi.org/10.1111/j.1574-6976.2011.00313.x
  38. Stach, J.E.M., Maldonado, L.A., Ward, A.C., Goodfellow, M., and Bull, A.T. 2003. New primers for the class Actinobacteria: Application to marine and terrestrial environments. Environ. Microbiol. 5, 828-841. https://doi.org/10.1046/j.1462-2920.2003.00483.x
  39. Stackebrandt, E. and Schumann, P. 2004. Reclassification of Promicromonospora pachnodae Cazemier et al. 2004 as Xylanimicrobium pachnodae gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 54, 1383-1386. https://doi.org/10.1099/ijs.0.63064-0
  40. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. Mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  41. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  42. Wang, Y., Zhang, Z., and Ruan, J. 1996. A proposal to transfer Microbispora bispora (lechevalier 1965) to a new genus, Thermobispora gen. nov., as Thermobispora bispora comb. nov. Int. J. Syst. Bacteriol. 46, 933-938. https://doi.org/10.1099/00207713-46-4-933
  43. Xu, X.X., Wang, H.L., Lin, H.P., Wang, C., Qu, Z., Xie, Q.Y., Ruan, J.S., and Hong, K. 2012. Microbispora hainanensis sp. nov., isolated from rhizosphere soil of Excoecaria agallocha in a mangrove. Int. J. Syst. Evol. Microbiol. 62, 2430-2434. https://doi.org/10.1099/ijs.0.037267-0
  44. Yoon, M.H., Ten, L.N., Im, W.T., and Lee, S.T. 2008. Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int. J. Syst. Evol. Microbiol. 58, 1878-1884. https://doi.org/10.1099/ijs.0.64768-0

Cited by

  1. Influence of rhinoceros beetle (Trypoxylus dichotomus septentrionalis) larvae and temperature on the soil bacterial community composition under laboratory conditions vol.108, 2017, https://doi.org/10.1016/j.soilbio.2016.12.005
  2. Phylogenetic characteristics of actinobacterial population in bamboo (Sasa borealis) soil vol.52, pp.1, 2016, https://doi.org/10.7845/kjm.2016.6006
  3. 장수풍뎅이 유충의 장내 미생물을 이용한 다양한 식물 균류병의 생물적 방제 및 생장촉진 vol.26, pp.4, 2013, https://doi.org/10.5423/rpd.2020.26.4.210