• Title/Summary/Keyword: 셀룰로오스 아세테이트

Search Result 55, Processing Time 0.033 seconds

Preparation and Mechanical Properties of Nanocomposite of Cellulose Diacetate/Montmorillonite (셀룰로오스 디아세테이트/몬모릴로나이트 나노복합체의 제조 및 기계적 물성)

  • 조미숙;최성헌;남재도;이영관
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.551-555
    • /
    • 2004
  • Cellulose diacetate (CDA) nanocomposite films were prepared by using various plasticizer and montmorillonite nanofiller in methylene chloride/ethanol (9:1 w/w) mixed solution. The thermal property (T$_{g}$) of prepared CDA films was observed by DSC and T$_{g}$ of the films was decreased with the increase in the plasticizer content. The degree of dispersion of MMT in the CDA film was observed by XRD and mechanical property of CDA film was measured by tensile strength and Young's modulus. When the plasticizer was added into the CDA film upto 30 wt%, the Young's modulus of film was decreased from 1930 MPa to 1131 MPa but was increased from 1731 MPa to 2272 MPa when the MMT was added into the film upto 7 wt%. The mechanical properties of CDA films were decreased by addition of plasticizer but strengthened by the incorporation of MMT.

Preparation of Cellulose Nanoparticles Loaded with Vitamin E Acetate (비타민 E 아세테이트가 봉입된 셀룰로오스 나노입자의 제조)

  • 남다은;정택규;김승수;신채호;신병철
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.128-134
    • /
    • 2004
  • Cellulose nanoparticles loaded with vitamin I acetate were prepared by modified spantaneous emulsification solvent diffusion method. After cellulose derivatives were dissolved in mixed acetone/ethanol organic solvent with vitamin E acetate, cellulose nanoparticle suspensions were dispersed in poly(oxyethylene sorbitane monooleate) solution using ultrasonicator. Particle size and loading amount of vitamin I acetate were measured by particle size analyser and UV-spectrometer, respectively. The stability of nanoparticle was determined by measuring the change of the particle size at room temperature for 30 days and the morphology was observed by SEM. Morphology of cellulose nanoparticles was spherical and particle size was not changed at room temperature for 30 days. The optimum condition for the preparation of cellulose nanoparticles was 1% w/v cellulose nitrate with 8% w/v poly(oxyethylene sorbitane monooleate) solution. It showed that particle size and loading amount of vitamin E acetate was 65nm and 71%, respectively.

Grafting of Performed Polyacrylonitrile onto Cellulose Acetate (Polyacrylonitrile과 셀룰로오스 아세테이트의 그라프팅에 관한 연구)

  • 이명구;원종명
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.30-35
    • /
    • 1998
  • The cellulose modification can be made in steps, giving a range of new products having properties quite different from the parent cellulose. Effective molecular weight control and narrow molecular weight distribution of the polyacrylonitrile can be accomplished by anionic polymerization technique. Preformed polyacrylonitrile was grafted precisely onto cellulose acetate by SN$_2$ reaction mechanism in a simple and effective way under homogeneous reaction condition. The 3.5g of completely dried cellulose acetate(DS=2.4) dissolved in 50ml of dry THF was transferred to the 215m1 polyacrylonitrile solution. The mixture was stirred vigorously under nitrogen atmosphere for 2 hrs. FTIR spectra of cellulose acetate and grafted cellulose acetate were taken, and their characteristic bands were identified.

  • PDF

Evaluation of Cellulosic Fiber해s Biodegradation (셀룰로오스 섬유의 생분해성 평가)

  • 강연경;박정희
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.123-126
    • /
    • 2002
  • 섬유와 같은 고분자 물질의 생분해성은 그 분자의 화학적, 물리적 특성과 밀접한 관련이 있으므로 같은 셀룰로오스로 이루어진 섬유라고 해도 각각의 화학적 구조나 물리적 특성에 따라 분해 거동이 다를 수 있다. 면, 마, 레이온, 아세테이트 등은 모두 셀룰로오스계 섬유라는 공통점이 있으나 구조적 차이, 제조 공정의 차이, 그리고 분자의 화학 조성 등이 다르며, 함유되어있는 비셀룰로오스분의 종류 및 구성비가 다르다. (중략)

  • PDF

Development of Filter Sorting Process for Cigarette Butt Recycling and Extraction of Cellulose Acetate (담배꽁초 재활용을 위한 필터 선별공정 개발 및 셀룰로오스 아세테이트의 추출)

  • Minseon Park;Minjung Jung;Noh-sup Lee;Soochul Rhee;Namhoon Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.5-14
    • /
    • 2024
  • A study approached the development of a process for efficiently recycling discarded cigarette butts, reported as a major source of microplastic pollution in aquatic environments. Cigarette butts were sorted to extract filters, and cellulose acetate, the raw material of the filters, was extracted to a high degree of purity. The sorting of filters from cigarette butts was conducted through both wet and dry processes, each with optimized sorting conditions. Wet stirring sorting considered factors such as solid-liquid ratio, stirring speed, and stirring temperature. The highest efficiency of wet stirring sorting, at 46.21%, was observed with a solid-liquid ratio of 1:45, stirring speed of 200 rpm, and stirring temperature of 50℃. Dry wind power sorting took into account moisture content and residence time. The filter sorting efficiency reached its peak at 57.10% with a moisture content of 20% and a residence time of 5 minutes. There was no significant difference in the recovery rate of cellulose acetate between the two sorting processes. Dry wind power sorting was deemed a more advantageous process in terms of energy and environmental considerations within the scope of this study.

Preparation of Ultrafine Fiber Web from Cellulose Acetate by Electrospinning (전기방사에 의한 셀룰로오스 아세테이트 극세 섬유 웹의 제조)

  • Lee, In-Hwa;Seol, Myung-Su;Park, Ju-Young;Yoon, Suk-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.255-259
    • /
    • 2006
  • Ultrafine fibers having approximately 800 nm diameter were prepared by an electrospinning method from cellulose acetate. Cellulose acetate dissolved in acetone solutions were electrospun at various conditions. The cellulose polymer solutions of various concentrations were applied under different voltages, flow rates, and tip-to-collector distances (TCD). The diameter of fibers depended on the electrospinning parameters such as its viscosity. The fibers were not formed from the polymer solutions less than 12.0 cP viscosity. The minimum diameter was 800 nm at 12.5 wt% of polymer concentration, 12 kV of voltage, $100{\mu}L/min$ of flow rate, and 7.5 cm TCD.