• Title/Summary/Keyword: 세계측지좌표계

Search Result 47, Processing Time 0.029 seconds

Accuracy Comparison as World Geodetic Datum Transformation of 1/1000 Digital Map (1/1,000 수치지형도의 세계측지계 변환에 따른 정확도 비교)

  • Yun, Seok-Jin;Park, Joung-Hyun;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.169-175
    • /
    • 2009
  • According as standard of measurement is changed to world geodetic system by surveying law revision, we need to transform previous 1/1,000 digital maps as a standards of world geodetic system. And, we should acquire standard strategy to minimize confusion and error by conversion of geodetic surveying standards. Thus, conversion of digital maps must be transformed efficiently and consistently according to notice of relevant standard. As common point, we have used 1/1,000 digital map and local geodetic system coordinates and world geodetic system coordinates that had been used in UIS business of Pusan city and, make a analysis of distortion quantity using KASM Trans Ver 2.2. As the result of distortion quantity calculation about all Pusan city, numbers of area that error is over 0.05m are 35 in case of X(N) and 43 in case of Y(E). Because some business section have especially much error, we divided into 3 areas, that was A,B,C, and analyzed. As a result of analysis, errors of more than 0.05m are occurred only 1 X(E) in the B area and 1 X(N) and 1 Y(E) in the C area. In conclusion, We think It is a good method that we consider a distortion quantity and divide a region, and transfer to world geodetic system for large area like Pusan city.

Coordinate Transformation between Korean Geodetic System and WGS-84 by 7 Parameter Coordinste Transformation Method (7-매개변수 좌표변환에 의한 우리나라 측지계와 WGS-84의 좌표변환)

  • 권대원;윤홍식;최재화
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.117-124
    • /
    • 1995
  • The main purpose of the present study was to investigate coordinate transformation based on two different systems: one was the World Geodetic System 1984(WGS84) adopted as a reference system for GPS satellite surveying;and another was the current Korean geodetic system based on Bessel ellipsoid. For this purpose, three methods were used to determine 7 parameters as follows: Bursa-Wolf model, Molodensky-Badekas model, and Veis model. The coordinate transformation was carried out using simillity transformation applied the obtained 7 parameters and the precision of transformed coordinate was evaluated. From this results, we found that Bursa-wolf model is more suitable than others for the determination of transformation parameters in Korea.

  • PDF

Study on Coordinate Transformation of Railroad Central Linear-line Using the Railroad Reference Points (철도기준점을 이용한 철도중심선형 좌표변환에 관한 연구)

  • Moon, Cheung-Kyun;Heo, Joon;Kang, Sang-Gu;Kim, Il-Joo;Park, Jae-Hong;Kim, Sung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.685-691
    • /
    • 2007
  • In this paper through Honan high-speed railroad which is planned with the north and south axis, we will verify the feasibility of the coordinate conversion using railroad control points after regarding current planned-railroad as the linear central axises. From analysis, distortion of Y axis varies 21 cm to 40 cm diminishing to a gentle straight line, distortion of X axis varies 14 cm to 29 cm. Through a revision, the deviation value between the coordinates were 6 mm to 9 mm and it satisfied the allowable error of national geographic information institute which is following ITRF (International Terrestrial Reference Frame) and cadastral boundary survey (10 cm). consequently the coordinate conversion is possible using railroad control points as common control points.

Optimal National Coordinate System Transform Model using National Control Point Network Adjustment Results (국가지준점 망조정 성과를 활용한 최적 국가 좌표계 변환 모델 결정)

  • Song, Dong-Seob;Jang, Eun-Seok;Kim, Tae-Woo;Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.613-623
    • /
    • 2007
  • The main purpose of this study is to investigate the coordinate transformation based on two different systems between local geodetic datum(tokyo datum) and international geocentric datum(new Korea geodetic datum). For this purpose, three methods were used to determine seven parameters as follows: Bursa-Wolf model, Molodensky-Badekas model, and Veis model. Also, we adopted multiple regression equation method to convert from Tokyo datum to KTRF. We used 935 control points as a common points and applied gross error analysis for detecting the outlier among those control points. The coordinate transformation was carried out using similarity transformation applied the obtained seven parameters and the precision of transformed coordinate was evaluated about 9,917 third or forth order control points. From these results, it was found that Bursa-Wolf model and Molodensky-Badekas model are more suitable than other for the determination of transformation parameters in Korea. And, transforming accuracy using MRE is lower than other similarity transformation model.

Area Changes in the Administrative Boundary Map of Korea by National Geodetic Reference Frames (세계측지계 전환에 따른 우리나라 행정구역도상 면적 변화)

  • Bae, Tae-Suk;Kim, Jeong-Hee;Yoon, Jong-Seong;Jeong, Jae-Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.241-247
    • /
    • 2012
  • The national geodetic reference frame of Korea switched to the International Terrestrial Reference Frame (ITRF) in 2003. In order to study the land area changes, we calculated the entire land area of Korea using the administrative boundaries of census data provided by Statistics Korea. The standard transformation procedure by the National Geographic Information Institute (NGII) was followed. The Transverse Mercator (TM) projected coordinates were transformed into the GRS80-based world geodetic reference frame, and the ellipsoidal and the projected areas were calculated. The provinces that range over two projection origins were divided into two polygons and projected using appropriate origins. After the transformation, all boundaries were shifted in the northwestern direction, resulting in a decreased area of $1.36km^2$ (about 0.0013%) on the projected plane. Moving the boundaries into a high latitude area cancels out the effect of the enlarged ellipsoid. In addition, the rate of change shows that a higher-latitude province is more sensitive to the shift of the boundaries. The data by Statistics Korea is significantly different from those of the Ministry of Land, Transport and Maritime Affairs (MLTM), thus it is urgently recommended that the data are integrated and unified.

Analysis of National Control Points in Jeju Area (제주지역의 국가 기준점 정확도 분석)

  • Jung young-dong;Yang young-bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.273-282
    • /
    • 2005
  • A rapidly developed satellite technology is used in comprehensive fields such as spatial data aquisition and applications. Especially a GPS positioning is expected to reinvigorate at the national reference system changes to ITRF (International Terrain Reference Frame). Currently the National Geographic Information Institute (NGII) issues a triangulation point coordinate by separating old and new coordinates and in the year of 2007 it will be scheduled to be changed ITRF. The triangulation point coordinate in Cheju area causes some problems due to the difference original observation and re-observation. Thus in this study a GPS observation is conducted after re-organizing geodetic network based on 1st and 2nd order triangulation in order to check the current triangulation points in Cheju area. After the GPS observation data analysis, stable points were extracted, proposed a geodetic network and its application.

Accuracy Analysis on Geodetic Network in Jeju area using GPS (GPS에 의한 제주지역의 측지기준망 정확도 분석)

  • Kang, Sang-Gu;Jung, Young-Dong;Yang, Young-Bo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.65-74
    • /
    • 2006
  • A rapidly developed satellite technology is used in comprehensive fields such as spatial data aquisition and applications. Especially a GPS positioning is expected to reinvigorate at the national reference system changes to ITRF(International Terrain Reference Frame). Currently the National Geographic Information Institute(NGII) issues a triangulation point coordinate by separating old and new coordinates and in the year of 2007 it will be scheduled to be changed ITRF. The triangulation point coordinate in Cheju area causes some problems due to the difference original observation and re-observation. Thus in this study a GPS observation is conducted after re-organizing geodetic network based on 1st and 2nd order triangulation in order to check the current triangulation points in Cheju area. After the GPS observation data analysis, stable points were extracted, proposed a geodetic network and its application.

  • PDF

The Korean Geodetic Network Adjustments for EDM Area (국가기준점 망조정에 관한 연구 - EDM 관측지역)

  • Yang, Hyo-Jin;Choi, Yun-Soo;Kwon, Jay-Hyoun;Kim, Dong-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.393-398
    • /
    • 2007
  • According to the Korean datum change to a world geodetic system, the EDM area should be readjusted to provide consistent product over the country. The data set for EDM area is extracted from the previous KTN1987 DB and checked for the moved markers in XY network adjustment which provides quality verification. Then, EDM data set for the seven areas are rebuilt for the adjustment. Since the data is still based on the old datum, the coordinates of the data are transformed by applying the coordinate transformation parameters. Here, the transformation parameters, which were determined for the conversion of 1:50,000 topographic maps by NGII, were used. For each EDM point, the geoidal height from EGM96 model is applied to obtain the ellipsoidal height based on the GRS80. The measured distance projected onto GRS80 is adjusted using BL network adjustment by fixing 2nd order or 3rd order GPS control points. The results from the readjustment show the minimum standard error of 1.37" and the maximum standard error of 2.13". Considering the measurement accuracy of EDM (1.6" corresponding to about 2cm) and GPS position for fixed points (2cm), this result is considered to be reasonable and it is good for the practical use.

The Research on scheme for revitalization of Conversion into World Geodetic Reference System (세계측지계 전환 활성화를 위한 방안 연구)

  • Sohn, Duk-Jae;Lee, Hyun-Jik;Yu, Young-Geol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.311-321
    • /
    • 2009
  • The Nation Geodetic Reference System which presents a consistent location standard used in creating a map or developing national land is defined and managed by the law in a nation. Each nation had used its own geodetic system created by astronomical surveying until recently, when Geodetic Reference System(World Geodetic Reference System) has been developed and used to progress in space and satellite geodetic technologies. Korea also amended its geodetic law in December 2001, converting its national geodetic system whose reference an oval figure is Bessel ellipsoid into the World Geodetic Reference System which uses GRS80 ellipsoid as reference ellipsoid. Accordingly, the National Geography Information Institute improved law and systems related to the change for the effective conversion from its national geodetic system into the World Geodetic Reference System. In addition National geographic information institute of the results of various studies is drawn to the World Geodetic Reference System for switching technology-met some of the institutional foundation Despite of accordance with formalities, National geographic information institute, Ministry of Land, Transport and Maritime Affairs and some local government of the World Geodetic Reference System, and local government has or has not spread in public institutions. Therefore, in order to promote the switch to the World Geodetic Reference System, it is required to analyze current technical and institutional problems and obstacles of the switch to the World Geodetic Reference System and to present the resolutions and to establish policy to achieve them. Accordingly, for the promotion of the switch to the World Geodetic Reference System, this study analyzed the results of previous studies, the current state of the switch to the World Geodetic Reference System and the problems of the switch, and then offered technological and institutional supplements. Furthermore, it standardized the subject and type of the conversion, defined the scope of the tasks of the National Geographic Information Institute and its related organizations, and presented the policy direction for the overall use of the World Geodetic Reference System by 2010.

An Integrated Approach to the GIS Data Reengineering for the New Korea Geodetic Datum (세계측지계 도입에 따른 공간데이터 재정비를 위한 통합모델 연구)

  • Lee Yang-Won;Park Key-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.153-171
    • /
    • 2005
  • The newly adopted Korea Geodetic Datum (a.k.a. KGD2002) calls for massive reengineering work on geospatial dataset. The main focus of our study is placed on the strategy and system implementations of the required data reengineering with a keen attention to integrated approaches to interoperability, standardization, and database utilization. Our reengineering strategy includes file-to-file, file-to-DB, DB-to-file, and DB-to-DB conversion for the coordinate transformation of KGD2002. In addition to the map formats of existing standards such as DXF and Shapefile, the newly recommended standards such as GML and SVG are also accommodated in our reengineering environment. These four types of standard format may be imported into and exported from spatial database via KGD2002 transformation component. The DB-to-DB conversion, in particular, includes not only intra-database conversion but also inter-database conversion between SDE/Oracle and Oracle Spatial. All these implementations were carried out in multiple computing environments: desktop and the Web. The feasibility test of our system shows that the coordinate differences between Bessel and GRS80 ellipsoid agree with the criteria presented in the existing researches.