• Title/Summary/Keyword: 선택적 추론

Search Result 253, Processing Time 0.022 seconds

A Development of Transport Choice Models using Fuzzy Approximate Reasoning Methods (퍼지근사추론을 이용한 교통수단 선택모형 구축)

  • 원제무;손기복
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.1
    • /
    • pp.99-110
    • /
    • 1998
  • 본 연구에서는 인간의 판단과 유산한 구조를 갖는 퍼지근사추론모형(FARM)을 구축하여 교통수단 선택형태에 적용하고자 하였다. 이를 위해 먼저 근사추론모형의 이론적 배경을 살펴보고 버스와 지하철간의 수단선택 모형을 구축하였다. 입력변수로 버스와 지하철간의 총통행시간의 차이와 총통행비용의 차이를 선정하였으며 출력변수로 버스이용확률을 사용하였다. 각 변수에 대한 퍼지집합은 각각 5개씩의 언어적 인 표현으로 구성하였으며, 규칙은 총 25개로 설정하였다, 구축된모형의 현실적 타당성을 검토하기 위해 서 실제 조사자료와 비교하였다. 분석결과 본 연구에서 구축된 퍼지근사추론모형이 통행자들의 수단선택 행태를 현실적으로 설명하는 것으로 나타났다.

  • PDF

Investigations on the Fuzzy Implication in the context of the Genetic-Based Fuzzy Reasoning (유전자 알고리즘을 이용한 퍼지 추론에서의 퍼지 함축에 관한 연구)

  • 임영희;이혜성;박대희
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.13-27
    • /
    • 1995
  • 국내외 문헌을 조사해 볼때, 최적의 퍼지 함축을 선택하는 것이 퍼지 추론 및 퍼지 추론의 모든 응용 분야에서 근본적인 문제임을 알 수 있다. 그러나 많은 연구가들의 계속적인 연구에도 불구하고 개인적인 평가 기준과 사용되는 응용 모델에 따라 각기 다른 성능 평가가 이루어졌으므로 퍼지 함축의 선택 문제는 아직까지도 논란의 대상이 되고 있다. 최근 학습이론의 도입으로 퍼지 추론을 상당한 효과를 보았으나 퍼지 함축의 선택 문제와 관련된 연구는 전무하다. 따라서 본 논문에서는 유전자 알고리즘을 퍼지 추론에 적용했을 때의 퍼지 함축의 선택 문제를 고찰, 분석한다. 즉 유전자 알고리즘을 이용하여 퍼지 소속 함수를 조정함으로써 퍼지 추론 기관의 성능 향상뿐 아니라 폭 넓은 퍼지 함축의 선택이 가능하다.

  • PDF

EVALUATION OF FREQUENTIST AND BAYESIAN INFERENCES BY RELEVANT SIMULATION (베이지안 방법을 포함한 일반적 통계 추론에 대한 상관모의를 이용한 평가방법)

  • 김윤태
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2000.11a
    • /
    • pp.41-62
    • /
    • 2000
  • 현실적으로 통계추론 방법의 적용시, 그 정당성이 보장되는 기본가정이외에도 추가적인 가정이 불가피하여, 본래의 정당성이 퇴색되는 경우가 흔히 발생한다. 따라서 이런 경우에는 통계추론의 평가가 필수적일 것이나, 많은 경우에 분석적 평가를 하기에는 너무 복잡하여, 특정상황을 상정한 모의분석 평가가 주류를 이루고 있다. 본 고에서는 보다 일반적 상황에서의 통계추론의 평가를 위해 브트스트랩방법과 같이 관찰값에 의존한 모의방법(observation-based simulation)을 이용한 평가방법을 제안한다. 우선 설득력 있는 평가요소로서 구간추정시 포함확률(coverage probability)와 같은 빈도성질(frequency property)를 선택하였다. 빈도성질은 고전적 통계추론은 물론 베이지안 통계추론을 대상으로도 의미있는 평가기준으로 판단되는 바, 이를 평가요소로서 선택하고, 이의 추정을 위한 방법과, 그 추정결과의 해석과 나아가 이를 기준으로 한 통계추론 결과의 조정 방법까지 일련의 절차에 대한 방법론을 제시하였다.

  • PDF

Selective Inference in Modular Bayesian Networks for Lightweight Context Inference in Cell Phones (휴대폰에서의 경량 상황추론을 위한 모듈형 베이지안 네트워크의 선택적 추론)

  • Lee, Seung-Hyun;Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.10
    • /
    • pp.736-744
    • /
    • 2010
  • Log data collected from mobile devices contain diverse and meaningful personal information. However, it is not easy to implement a context-aware mobile agent using this personal information due to the inherent limitation in mobile platform such as memory capacity, computation power and its difficulty of analysis of the data. We propose a method of selective inference for modular Bayesian Network for context-aware mobile agent with effectiveness and reliability. Each BN module performs inference only when it can change the result by comparing to the history module which contains evidences and posterior probability, and gets results effectively using a method of influence score of the modules. We adopt memory decay theory and virtual linking method for the evaluation of the reliability and conservation of casual relationship between BN modules, respectively. Finally, we confirm the usefulness of the proposed method by several experiments on mobile phones.

Fuzzy Reasoning based Selection Operator for Genetic Algorithm (퍼지 추론 기반의 유전알고리즘 선택 연산자)

  • Seo, Ki-Sung;Hyun, Soo-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.116-121
    • /
    • 2008
  • This paper introduces a selection operator which utilized similarity and fitness of individuals based on fuzzy inference. Adding similarity feature to fitness, proposed selector obtained the decrease of premature convergence and better performances than other selectors. Moreover, an adoption of steady-state evolution provided enhancement of performances additionally. Experiments of proposed method for deceptive problems were tested and showed better performances than conventional methods.

Automatic Inference Algorithm selection for Real-time Intelligence Service (실시간 지능화 서비스를 위한 추론 알고리즘 선별 기법)

  • Lee, Jung-June;Kim, Kyung-Tae;Cho, Young-Joo;Youn, Hee-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.71-72
    • /
    • 2016
  • 베이지안 알고리즘은 추론 분야에서 오랜 기간 사용되어 왔다. 하지만 기본적인 베이지안 네트워크 이론만으로는 다양한 도메인에 적합한 추론 기능을 제공할 수 없기 때문에, 도메인의 특성에 맞는 알고리즘이 적용된 다양한 추론 기법들이 연구되어왔다. 본 논문에서는 실시간 지능화 서비스를 위하여 특정 도메인 영역에 대하여 자동으로 적합한 베이지안 네트워크 알고리즘을 선별하는 기법을 제안한며, 해당 기법의 적합도를 평가하기 위해서 수학적인 모델링과 추론 알고리즘 선택 기법에 대해 서술한다.

  • PDF

A Comparison of Students' Reasoning Shown in Solving Open-Ended and Multiple-Choice Problems (개방형 문제와 선택형 문제 해결에 나타난 학생의 추론 비교)

  • Lee, Myoung Hwa;Kim, Sun Hee
    • School Mathematics
    • /
    • v.19 no.1
    • /
    • pp.153-170
    • /
    • 2017
  • This study conducted an analysis of types of reasoning shown in students' solving a problem and processes of students' reasoning according to type of problem by posing an open-ended problem where students' reasoning activity is expected to be vigorous and a multiple-choice problem with which students are familiar. And it examined teacher's role of promoting the reasoning in solving an open-ended problem. Students showed more various types of reasoning in solving an open-ended problem compared with multiple-choice problem, and showed a process of extending the reasoning as chains of reasoning are performed. Abduction, a type of students' probable reasoning, was active in the open-ended problem, accordingly teacher played a role of encouragement, prompt and guidance. Teachers posed a problem after varying it from previous problem type to open-ended problem in teaching and evaluation, and played a role of helping students' reasoning become more vigorous by proper questioning when students had difficulty reasoning.

전문가 시스템의 불확실성 추론 방법

  • 이승재
    • 전기의세계
    • /
    • v.39 no.8
    • /
    • pp.7-12
    • /
    • 1990
  • 전문가 시스템에 있어서의 불확실성 정보의 표현 및 처리를 담당하는 주요 추론모델중 Bayesian모델, Certainty Factor 모델 그리고 Dempster-Shafer 모델의 기본이론을 살펴보고자 한다. 이외의 주요 추론 방법으로서 Fuzzy추론 모델이 있는데 이는 판단 지식에 대한 주관적 불확실성과 "매우", "많이" 등의 자연어가 포함하고 있는 불분명성을 체계적이고 효과적으로 다룰 수 있는 Fuzzy Set 이론에 근거한 방법으로서, 불확실성 또는 불명료성을 0에서부터 1 사이의 값을 갖는 membership degree로 표시하며 이를 "MIN"과 "MAX" 함수를 이용한 합성 추론 규칙(Composition Rule of Inference)를 적용하여 처리한다. Fuzzy 추론 모델은 자연어를 포함하는 전문가의 지식 처리에 매우 적합하여 앞으로 그 응용이 높이 기대되는 방법이다. 이외에 Bayesian 모델을 변형 응용한 PROSPECTOR의 Likelyhood Ratio 모델, 정량적 방법인 Theory of Endorsement 모델 등 여러 방법이 있다. 그러나 어느 모델이 더 일반성을 갖고 더 좋은 방법인가 하는 문제에 대하여는 아직 많은 연구가 요구된다. 따라서 이러한 모델들의 전문가 시스템 적용에 있어서는 각 모델의 장단점을 고려하여 주어진 문제 영역에 적합한 모델을 선택하는 것이 바람직하다. 현재 불확실성 처리에 있어서 각 문제에 따른 경험적인 처리에 의존하는 전력 계통 분야의 적용에 있어서도 이러한 실인간 전문가의 추론방법에 근접된 반성을 갖는 불확실성 추론 방버 도입이 요구된다.가의 추론방법에 근접된 반성을 갖는 불확실성 추론 방버 도입이 요구된다.

  • PDF

Design and Implementation of the ECBM for Inference Engine (추론엔진을 위한 ECBM의 설계 구현)

  • Shin, Jeong-Hoon;Oh, Myeon-Ryoon;Oh, Kwang-Jin;Rhee, Yang-Weon;Ryu, Keun-Ho;Kim, Young-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3010-3022
    • /
    • 1997
  • Expert system is one of AI area which was came out at the end of 19705s. It simulates the human's way of thinking to give solutions of Problem in many applications. Most expert system consists of many components such as inference engine, knowledge base, and so on. Especially the performance of expert system depends on the control of enfficiency of inference engine. Inference engine has to get features; tirst, if possible to minimize restrictions when the knowledge base is constructed second, it has to serve various kinds of inferencing methods. In this paper, we design and implement the inference engine which is able to support the general functions to knowledge domain and inferencing method. For the purpose, forward chaining, backward chaining, and direct chaining was employed as an inferencing method in order to be able to be used by user request selectively. Also we not on1y selected production system which makes one ease staradization and modulation to obtain knowledges in target domain, but also constructed knowledge base by means of Extended Clause Bit Metrics (ECBM). Finally, the performance evaluation of inference engine between Rete pattern matching and ECBM has been done.

  • PDF

일반화 감마분포에서의 누율계산과 지표모수에 대한 Bartlett 검정

  • 나종화
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.2
    • /
    • pp.533-540
    • /
    • 1997
  • 일반화 감마분포(generalized gamma distribution)에서 지표모수(index parameter)에 대한 추론은 생존시간(lifetime)과 관련한 모형의 선택문제에서 매우 중요하다. 이에 대한 정확한(exact) 추론법은 알려져 있지 않다. 본 연구에서는 이에 대한 점근적(asymptotic) 검정법으로 소표본에서도 우도비 검정에 비해 효율이 뛰어난 Bartlett 검정을 제안하고, 이의 요율적 수행을 위한 대체 모형으로 부터의 누율계산(cumulant computation) 법을 제시하였다. 또한 실제자료에 대해 본 논문에서 제시한 누율계산과정을 이용하여 Bartlett 검정을 실시한 결과 기존의 우도비 검정과는 상당히 큰 차이가 남을 확인하였다. 따라서 모형의 선택 등의 문제에서 제안된 방법은 소표본의 경우에 더욱 효율적이라 할 수 있다.

  • PDF