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I. Overview

A reasonable statiétical inference procedure would be justified by some validity
and performance proved under some basic assumptions. But in many real
situations for statistical procedures, the validity and performance are affected by
further assumptions and decisions inevitably involved in the procedures. Here are
some examples:

e The classical strategy in the regression model having a suite of highly
correlated covariates is to select a subset model, and then make the inference
assuming the subset model. We call this kind of method a selection and estimation
(S/E) procedure. All the justification of the inferences coming from the subset
model can not be guaranteed since it ignores the uncertainty in the selected
subset model;

e Inferences based on asymptotic theory could be justified only for infinitely
many samples, but the real situation always involves finite samples;

o In a parametric model with nuisance parameters, an estimate of the nuisance
parameter is often substituted for true value in the inference procedure. Ignoring
the uncertainty in the estimated nuisanée values could invalidate the inference;

® The performance of ridge estimators depends critically on the choice of the
ridge constant; there is as yet no consenéus as to an optimal choice; and

e More generally, the repeated sampling properties of Bayesian procedures
depend on the choice of the prior distribution; data-dependent priors for
pseudo-Bayes methods have been proposed for certain problems, but no general
theory exists.

When we get an inference result from such statistical procedures, we may want
to check whether or not the additional assumptions and decisions distort validity
and performance of the inference. However, the situation can he too complicated to
get an analytical evaluation for the inference in many cases. For example, the
complicated selection step in the S/E procedure for regression modeling, makes it
impossible to get an analytical evaluation tool. Simulation study could be an

alternative way of evaluating such a complicated inference procedure, but the
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evaluations coming from general simulation study would only apply to the. specific
simulated circumstances., For the simulation in  the parametric model, the
simulation result may depend on:the chosen parameter value.

We suggest an evaluation methodology relying on an observation—based
simulation for generalA frequentist and Bayesian inferences on parametric model.
The suggested methodology can be applied to any inference procedure, no matter
how complicated, as long as it ‘can be codified for repétition on the computer.
Unlike general simulation, the suggested methodology provides the evaluation
result which does not depend on the parameter value. |

Generally ;speaking, evaluation of an object has three main components:

. Which “factor” of the object is interesting for evaluation?

* How does one “measure” the factor? ‘

¢ How does one “evaluate” the object based on the measurement for the factor?

Here are our suggestions for these components for the evaluation of the general
inference. We also provide a method for fixing up the inference methods found to
be invalid under the suggested evaluation methodology.

Our suggestion for the factors of interest are the ideal sampling properties of
the inference. For examples, a valid confidence interval guarantees the coverage
probability of including true parameter in the sampling space is larger than the
nominal value. The justification for the P-value of the frequentist test of a simple
null hypothesis is that repeated samplings of P-value under the null leloW
uniform distribution over (0,1). We will adopt this frequentist criterion for both
frequentist and Bayesian inferences. It seems natural to expect the frequentist
inferences to have the ideal sampling properties., Though Bayesian inference
procedures are not designed for ideal sampling properties, it is also expected to
satisfy them well in order to be a reasonable statlstlcal framework.

All the interesting ideal sampling propertles of mferences could he expressed as
the conditions for parameter dependent frequentist risks over a portion of
parameter space. For example, achievement of the nominal coverage probabﬂity of
a v ~level confidence interval ci,(X) for some interesting function phi( 8) ‘of the

parameter with parameter space ® can be expressed as

E(lci,o2#(0)] ] 6=0"=v,V0 =6,
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Relevant simulation methodology(RSM) 1is suggested for parameter free
measurement for the risks of interesting ideal sampling properties. The main idea of
RSM is to integrate out the parameter in the risk with a relevant measure of
parameter to common sense and observations. Our choice for the relevant measure is
based on posterior probability of parameter with non-informative prior. The basic idea
of RSM, emphasizing the relevant region of parameter to the common sense and
observation is not a new one. There are many simulation studies emphasizing the
simulation results on the parameter region the researcher feels relevant. Bootstrap is
also a well-known observation-based simulation methodology. The Bayesian
procedures integrating over the parameter space with posterior distribution of
parameter seem to be closer to the our RSM. The Bayesian posterior predictive
distribution is an example of such Bayesian procedures. Another example can be
found in the construction of empirical Bayesian (EB) confidence intervals.

The simulation-based RSM could provide not only an estimate for the risk, but
also a measure of precision, such as standard error. Using these quantities, formal
inference procedures like confidence intervals and hypothesis tests could be
provided to determine whether the risk condition is satisfied.

Additionally, we provide the adjustment methods for the inferences founded to
be invalid with respect to an ideal sampling property by the suggested evaluation
scheme. Details of the methods for fixing up invalid P-values and interval
estimators to have their ideal sampling properties are provided. We will call the
presented evaluation methodology for general inference “evaluation scheme using

RSM”.

1. Ideal sampling properties

As explained in Chapter I, the first component in genéral evaluation scheme is

110 "

the ““factor”” to be measured for the evaluation. The “ideal sampling property” of

inference is chosen to be the “factor” for the evaluation of general inference. We
will define the “ideal sampling properties” of inferences with a unified format, i.e.
some conditions in terms of the parameter-dependent frequentist risk in the joint
probability space of parameter and data. And also some rationale for choosing the

“ideal sampling property” as the “factor” will be provided.
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. There are some ideal sampling properties for each inference which we are expecting
fhe inference to have. For convenience, we categorize the ideal sampling properties
into two kinds: “validity properties” and “performance broperties”. A réasonabie
inference should be justified to be valid in a sense and also have enough performance
for obtaining a meaningful information.

Before going further, we may need some set-up and definitions of terms.

Suppose X . 1S an observation of the n-dimensional random variable X following
the very general parametric distribution having density Ax| ), where & is
r—-dimensional unknown parameter in parameter space . Let's assume we are

interested in the quantity expressed as a function of (9,‘
$(6):6—0,

where @ is a subspace of s-dimensional real space K°. For example, in an
epidemiological regression model for identifying the risk componenté to the
mortality, ¢(6) could be the coefficients of the potential risk components, or the
relative risk which is a real valued function of the coefﬁcients, or the future value
of the mortality. ‘ ‘ E ‘
" The statistical inference glz(X):for ¢(6) can be defined as a random functioﬁ

from the sample space X to the action space A,

[

WX X—A.

The inference types; point estimation, set (or interval) estimation, and hypothesis

test can be defined by the specific action spaces‘ as follows:

-Point estimation ¢p(X):

¢p(X): X—0;

«Set (or interval) estimation ¢AX):

¢ X): X—{subset of @},
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For convenience, ¢{(X) is assumed to be the interval estimator having ¢ (X)

and ¢'§] (X) for the lower and upper bound respectively;
*Hypothesis test resulting in P-value or posterior mean ¢{(X):

$7(X): X—[0,1];

and

*Hypothesis test resulting in the decision about the rejection for null hypothesis

G X):
b X): X—{0, 1},

Here 0 or 1 represents rejection or the acceptance of the null hypothesis
respectively. ‘
~The two major schools of statistics, frequentist and Bayesian have their own

suggestions for the inferences. Here are the notations and definitions of the
frequentist and Bayesian inferences for. ¢(8). The definitions of inferences shown

here are minimum requirements rather than rigorous definitions. Remember that
frequentists consider 6 as a constant, while Bayesians freat it as a random

variable:
K pe(X): frequentist general point estimator having small risk defined by
E(L(pe(X), $(6))), V 6= O,
where L( +) is an appropriate loss function;

+ ci(X): frequentist nu-level confidence interval such that

Pr(ci(X)= ¢(8)2v,V 6= 6.
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For convenience, we will assume that c¢i,(X) is the interval (not the general

region) having lower and upper bound denoted by iX(X) and (X))

respectively;

« pv(X): frequentist P-value for the hypothesis test of Hy: ¢(8)e @, Generally
P-value for a sample point x is the smallest test size for which the sample point

will lead to the rejection of Hj. Specifically for a family of tests with level- «
rejection region S, satisfying |

(@ 3O CO={0] ¢(OePys.t.Pry(XeS,)=a,V =6

) S,CS,,Va,d'=(0,1) and e<d’,
the P-value is defined by

20(30) =inf{a XS5,

For example, suppose X= (x1,*"",%,) is.a random sample from N(, Qz). The
usual T test for the hypothesis Hyu<ug, Hyp? ¢y is defined by the rejection

region S,={X|HX)> T, .-}, where HX)= S()§O—/ﬂ0n’ Ton-1 is the

(1—a) quantile of T-distribution with n-1 degree of freedom. The S, in this

test satisfies the two conditions with @ ={ (g, *) | z=0}, so the pv(X) can
be defined as inf{aXeS,}. ‘

- ht,(X): frequentist hypothesis test decision function with size « defined by
ht(X) = I p(X)> a],

whére Il -] is the identity function. AKx)=0 leads to rejection of the null
hypbthesis; ‘

» pb(X): Bayesian general point estimator having small expected risk defined by
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(X)) = E(L(pe(X), $(0)) | X).

The optimél Bayesian point estimator using a squared loss 1is the posterior

mean,
om(X) = E((0) | X;

- ¢r,(X): Bayesian v-level credible interval s.t.

Pr(er(X)24(0) | X)=v.

For convenience, we will assume that c¢7,(X) is the interval (not the general

region) having lower and upper bound denoted by o (X) and %(X)

respectively;
-« pp(X): Bayesian posterior probability for the hypothesis test defined by

(X)) =Pr(¢(he @ | X);

and

+ ht,(X): Bayesian hypothesis test decision function with the critical value 7

defined by
ht(X) = 1 pp(X)> 7].
The null hypothesis is rejected when &t,(X)=0.

Considering the parameter 6 as random quantity, the ideal sampling properties
of inferences can be explained by the conditional probabilistic properties on 64
over a subspace of & in the joint space of (X, 8). ‘

Here are the validity sampling properties of inferences:
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® Coverage probability of the general interval estimator ¢ £X):
Pr(¢ (X)=2¢(8)] 6 =06"= v,V 8 €0;
¢ Size of the general hypothesis test decision function ¢ #(X):
Pr(¢ (X)=016= 6*)<a/,‘ vé*e@o,
where @,={6 | $(0)E0(}; and
e Uniformity of pu(X) under the null hypothesis:
Pr(po(X)<k| 0 = 07) =k Vk=(0,1), Vo'€@",

where pv(X) is specifically for a family of tests With‘ level- @ rejection region S,
satisfying | | | H

(@ A0'CcoO={01¢(8)=0;} s.t. Pry(XeS,)=0a,V0E67,

by S,cS,,Va,e’'€(0,1),e<a’. |

For example, the T test for Hyp<p,, Hppdu, in Ny, o°) is a family of
test satisfying the above conditions with @ ={(x, %) | x =0}. So we can
expect the repetitions of pv(X) from the T test under the subsample space @
follow the uniform distribution over (0,1).

The first two validity properties are the definitions themselves, and the
uniformity of P-value can be easily shown from the definition of P-value . Note
that uniformity of P-value under the null hypothesis automatically guarantees the
satisfaction of the nominal size of the test. The uniformity of the P-value seems
to be a critical aspect of the frequentist hypothesis test which provides a rationale
of the test procedure, allowing for its common ‘interpretation across problems. As
indicated in Chapter I, there have been many suggestions adjusting the P-value

to achieve uniformity when the classical P-value is not uniform. Robinson et
al(1999}, Bayarri and Berger(1999), Meng(1994}, Rubin(1996) have suggested and
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evaluated various adjusted P-values in the presence of nuisance parameters.

Here are the performance sampling properties of inferences:

e Small error of ¢ p(X):

D¢ (X)), 0(0)] 6 =067 is small, V8'=06,

where D is a distance measure between two random variables. For example, a

risk function like MSE would be appropriate for D,
E((¢ (X)—¢(0N*| 0 =67 is small, V0*€6;
* Short length of ¢ AX)=(¢7(X), ¢ 7 (X):
D$H0, 4 V(0 | 6=0") is small, V0’0,

For example,

EQeEX)—¢ YN 6=06" is small, Vo*co,

where ||+|| is the norm;

¢ Small pv(X) under the alternative:
D(pv(X),01 6 =0") is small, V66,
where @ ,={6 | ¢(6)E @ ,}. For example,
E(pv(X) | 6=0 ") is small, Vo0*'€@,;

and

eSmall pp(X) under the alternative, large pp(X) under the null
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hypothesis:

D(p(X),01 6 =10") is small, Vo'€0,
D(pp(X),11 6 =106") is small, V'€,

For example,
Bl pp(X)—H#(6)Ed,]| | 6 =6 is small, Vo°€o.

:I‘he expected length of the interval estimator and some variations were used as
a performance measure for interval estirnators in the literature. For eXample,
Gross(1976) used it in measuring the “robustness of efficiency” for confidénce
in'cerval robustness | when dealing with long—tailed symmetric distributions. He
pointed out that expected length conld be criticized ‘on various grounds, including
the valid remark that since it is an average, it may perfonn poorly as an estimate
of locatlon for long-tail distributions.

The expected P-value under the altemative conld be a measure of performance
of the test procedure on the alternative. Harold and Easter(1999} suggested the
expected P-value (EPV) as an alternative performance measure when it is difficult
to calculate the power function. Similarly the expectatlon of pp(X) can be used
for the performance measure of the Bayesian hypothesis test on both null and
alternatlve hypothesis. ‘

The ideal sampling properties are usually used as the strategy for choosing a
specific frequentist‘ inference, so it is very natural to expect the frequentist
inferences to have ideal sampling properties. The main justification of the
Baye31an inferences is not based on sampling behaviors, but posterior probability
structure A Bayesian may not be as interested in the sampling properties, but it
is also expected to satisfy the ideal sampling properties well in order for the
Bayesian inference to be a reasonable statistical framework. Actually there have
been many suggestions for the inference procedure constructed by Bayesian
framework and having a good frequentist sampling properties.

A well-known difficulty in frequentist inference is the presence of nujsance

parameters. The plug-in approach, substituting estimates of nuisance parameters
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for the true values would be a typical frequentist method for this situation. But
this plug-in approach is ignoring the uncertainty of the estimates and so distorts
the designated validity and performance of the inferences. The Modified profile
likelihood function suggested by Cox(1993} which accounts for the effect of the
estimating nuisance parameter would be one frequentist solution to the nuisance
parameter problem. Some Bayesian alternatives to solve this problem have been
suggested.

It is also well known that the classical plug—in P-value for hypothesis test in
the presence of nuisance parameters is not satisfactory With‘ the ideal sampling
property, “uniformity under the null point”. Some Bayesian P-values have been
suggested that account for the uncertainty of the estimates in the Bayesian
framework including: posterior ﬁredictive P-value (Guttman(1967), Rubbin(1984)),
discrepancy P-value (Meng(1994), Gelman at al(1996)) and partial posterior
predictive and conditional predictive P-values (Bayarri and Berger(1999)); Bayarri
and Berger(1999) compared the uniformity of various P-values under the rll
hypothesis in the Vaﬁous set-up. Robin(1999) evaluated asymptotic uniformity of
P-values under the null hypothesis.

Interval estimation seems best place for communication of frequentist and
Bayesian inference procedures. It is well known that, in regular cases, v -level
Bayesian credible regionsl have approximately v coverage probability in repeated
sampling. ‘

The first-order approximation td confidence interval from Béyesian credible
interval can be achieved to be independent of the prior distribution. Tﬁe
second-order approximation can be constructed by the Jeffrey's prior (see Welch
and Peers(1963). However, it is problematic that improper :priors yield undesirable
improper posteriors for certain mixture models. Recent]y Wasserman(2000)
suggested a data-dependent proper prior producing the intervals with sécond‘—order

correct frequentist coverage on the mixture model,
Axl )= K patx] 0,

where e=(01,...,0 4 01,...,00, with p;20,7=1,..., k2 ,p,=1 and normal
density g(x| @ )).
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. The suggested data-dependent prior provided -a way of doing valid frequentist
inference in such a mixture model since it does. not depend on subjective input.
For two-sided intervals, Severni(1993) and Sweeting(1999) obtained the formulae

for third-order correct confidence interval assuming the. model Ax 6‘)7 depending

on a real scalar parameter 6.

. Method‘ology‘

1. Measurement
"All of the interesting ' ideal sampling properties defined in Chapter I can be

expressed by a common property of the following frequentist risk function, the

conditional expectations relying on parameter values, over a subparameter space,
E(L(¢(X), 4601 6=07), Vo'€06”,
where L is a real-valued loss (or gam) funct1on ‘O* is a subset-of the
parameter space ® and both L and O are defmed approprlately for each ideal

Samplmg property. For example, a(‘hlevement of the nomlnal coverage probablhty

of v-level confidence interval ci,(X) can be expressed as
B(L(ci,(X),¢(0) | 6=0=v, Vo'€6",
where L(ci, (3, (0))=1Ici,(X)24(6)] and 6°=6.

The uniformity of P-value for test with the rejection region S, can be

expressed by,
E(L(p(X),¢(6)) | 6 =0")=k, and Yke(0,1),V0 €67,

where Ly=I[po(X)<K], and ©'CO, s.t. Pr(XES,)=a,v06"
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We suggest relevant simulation methodology (RSM) as an observation-based
simulation methodology to measure the parameter dependent risks. The only
condition for RSM is that the statistical procedure generating the inference can be
codified, and repeated on the computer. The RSM has two main features;
data—dependent integrated risk measurement and Monte Carlo approximation.

Instead of looking at each expectation on each parameter value to check the

property above, we suggest using the integrated expectation over parameter space,
| JBLG (X0, 6000 | 6)u(as),

where ¢ (d8) is a “relevant measure” defined on the parameter space to common
sense and observation. The strategy using the relevant measure y(d6) reflects
the idea that the level of satisfaction of ideal sampling properties may depend on
the parameter values. Plausible parameter values implied by the data and common
sense should be emphasized in the evaluation. Therefore, the evaluation obtained
through this measurement could be interpreted as the weighted average of the
individual evaluations over the parameter space with relevant weight.

We will denote the “relevant distribution density for the parameter”
corresponding to the relevant measure z(d6) by #'(60) and the “relevant joint
probability distribution” constructed by the product of #'(#) and Ax| 6) by
G'(X, 6). Naturally the expectation and probability in the “relevant space” will
be referred as ‘“relevant expectation” and “relevant probability” and denoted by
E"(+) and Pr’(-). Following these notational scheme, the data-dependent
integrated risk measurement above can be expressed as the “relevant expectation

over the subparameter space” and denoted by
E-(L(¢ (X)), ¢(6)).
Note that E7(L{¢(X),#(8)), an expectation wrt the relevant measure

77(8) would be relevant to the unknown E(L(¢ (X)), ¢( G)), the expectation

w.rt. the true marginal distribution of parameter #(6), but they would still be
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far from each other. '

Our choices fbr the relevant measure are based on. the posterior distribution on
the observation with the non-informative prior. Note that one could simply
condition on 6 =8, ie. 7(8)=08="T01 |

In many cases, the calculation of the integral above would be algebraically

impossible, so we suggest using Monte Carlo simulation as an approximation.

1) Relevant distribution for parameter

Our basic approach to get the relevant distribution denoted by #"(8), as the
relevant measure of the pararhe‘ter is to rely on both information from data and
knowledge about the parameter. | } ‘

There are different ways one might try to objectively reflect the information in
the data. Here are two alterriatives; parametric bootstrap and posterior distribution
with non-informative prior. The first one is using a degenerate :relevant

distribution as follows,
7(0)=16="T7],

Where "6 is a reasonable estimate for 6. This reflects implicitly the
consideration of 8 as a fixed quantity rather than a random one and results in
the parametric bootstrap methodology. Another alternative for the relevant

distribution is the posterior distribution with non-informative prior,
7(0)=nyq(6 | X).

iOur general suggestion is the posterior distribution with non-informative prior.
It would be more reasonable to reflect the relevance of the parameters by
averaging them in some way rather than depending only on the best looking
parameter point. There would be no big difference between the evaluation results
from two relevant distributions when the likelihood function is a nice continuous
one, but generally depending on one point seems to be too risky. Furthermore, we
suggest using various posterior distributions having a range of variances from

céncentrated distribution to diffuse one.
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There are many ways to reflect the knowledge about the parameter in
constructing the relevant distribution along with the information from data. We
could first put the restrictions of the parameters based on past knowledge and
then reflect the observed information within restrictions. In cases where knowledge
about parameters could be -accurately expressed using a. prior distribution, the
posterior distribution would be a naturally relevant distribution: to both the

knowledge and the data.

2) Monte Carlo approximation
We suggest Monte Carlo simulation for approximating the integral, when an

analytic solution is impossible. The only condition for applying this approximation

is that the statistical procedure generating the inference ¢ (x). can be codified, so

that it can be repeated. Assuming the relevant measure is given by 7z’(8), the

steps are as follows:

e Generate 0,0 " randomly from 7'(8),i=1,...,R;

e Generate x; randomly from Ax| 6 ),i=1,..., R

e Calculate ¢ (x;) by the codified procedure, and @(6,), then
L(¢(x),0(0 )),i=1,....R; '

¢ Approximate f@_E(L( ¢ (X),p(0))| 6)(dB) by the average,

& DL (), 0(0 ).

This Monte Carlo approximation of the relevant expectation will be referred to

as “relevant estimate” and denoted by
E7 (L4 (X), $(6))).

This approximation can be justified by the fact that @(X , 8), the empirical

distribution function defined by the simulated samples,. is a reasonable
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approximation for the relevant joint space G'(X, ¢) and the integral with the
simple function G/E;F(X , @) having equal mass on the finite simulated points is

just the average of the points, ie.

[ B (X0, 800 | 0)x(d0)
= [ L0, 90 mac"*
= [ LX), #(0))d G (X, 0)

—11? 2114(‘/’(96;’), ?(0).

 Furthermore, the standard.error of this relevant estimate for the relevant

expectation can be acquired by
S.D.(Ly,...,Lp)/VR,

where S.D. stands for the standard deviation and L;=L( ¢ (X, (6 ).

- 2. Evaluation

‘The final evaluation for the satisfaction of the ideal sampling properties would
be completed by checking the conditions for the ideal sampling properties in terms

of felevant expectations. For example, it ‘Sho‘uld bé checked if
Eo(Kci, (X)2¢(0))=v,

for the v -level confidence interval ci,(X), and
Ey-(Kpv(X)<k)=k, Vk=(0,1),

Where ®*'CO,s.t. Pr,(XeS,)=a, for the P-value pu(X) of frequentist test

- 57 -



with the rejection region S, satisfying the needed conditions.

Even though it may be possible in some cases to get the analytical estimate for
the expectations, we are assuming Monte Carlo approximation, and so the relevant
estimate and its standard error are always available. Using these quantities from
the simulation with enough replications to apply the central limit theorem, we
could construct normal theory based inferences for checking them. For example,
we could construct 95% confidence interval for the relevant expectation for
checking the nominal coverage probability or conduct a hypothesis test for
checking it.

For the uniformity of P-value, instead of checking the infinitely many conditions
over k=(0,1), a better way is suggested. Considering the meaning of the
condition;, uniformity of the repeated P-values, a lack-of-fit test for uniformity of
the repeated P-values in the relevant joint space would be appropriate. The
Kolmogorov-Smirmov (K.S.) test is a possible choice. K.S. test for the test of

uniformity of the P-values is based on the statistic,

for Hy [F(x)=Fy(x) for all x] and Hy [F(x)=Fy(x) for at least one x],

where F(x) is the empirical distribution function of the repeated P-values and
Fy(x) is the uniform distribution function over (0,1). We are specially interested
in the uniformity on the region of sample space corresponding to small P-values
since the P-values appeared in real applications would be small. The K.S. test is
not designed with some emphasis on a specific sample space of the distribution.
Some tests based on rank statistics might have better power for this situation. In
this study, we used the K.S. ’test fbr convenience and the development of better

test for this problem was left for further study.
3. Adjustment
In this section, we explain the method to fix up the inference. The aim is to

adjust the original inference to have the ideal sampling property, not the

construction of a new inference method. This inference adjustment provides not
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only a valid inference procedure, but also a measurement for the invalidity of the
original 1nference

Let’s assume the inference ¢ (X) is invalid thh respect to an ideal validity
property through the suggested “evaluation scheme using RSM”.  Generally
speaking, if we can fmd a function 7 (A):A—A s.t. 7 (¢ (X)):X—A satlsfles
the needed ideal samphng property in our 51mulat10n scheme then the comp051te
function 7 (¢ (X)) would be the adjusted 1nference via - the suggested 31mu1at1on
scheme. ‘

Typically the qualified 7(-) to be valid in the above sense would not be
unique. So we may have to choose one among the possible alternatives which is
supported by .some rationale. A general ratlonale for .the selection could be
provided by the evaluation result with respect to another performance measure
through the suggested evaludtion scheme. Here - are our choices for the adjusted
P-value and adjusted confidence interval. The rational or the performance measure
for these selections are not given.‘ | ‘

.For the adjustment of pu(X) to heve the uniformity property, we could define
7‘/‘( pv) = EDF(pv), where EDF(pv) is the empirical distribution function of the
repeated pv's under the null relevant space. It is obvious that EDF(pv(X)) is a
valid inference satisfying the uniformity in the null relevant space. Notice that the
uniformity of EDF(pv(X)) is acquired in the sense. of average over the null
relevant space, not for each parameter value. So the suggested adjustment
EDF(pv(X)) can be invalid in the strict sense requiring the uniformity for each
parameter value in the null space.

Confidence intervals ci,(X) can also be adjusted to have the nominal coverage
probability by defining 7 (ci,)=ci adi~ (v ) where adi(v) is the function
providing the real coverage level of the confidence interval with nominal coverage

probability v in the relevant space. This adi(v) can be constructed in our
simulation scheme and could be assumed as the non-decreasing function for the

reasonable inference procedure.
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' anclusion

We believe the suggested “evaluation scheme using RSM” can serve as a valid
tool for frequentist point-of-view evaluation of ‘the implemented frequentist and
Bayesian inference on the observation. This evaluation tool could serve many
purposes:

o Justification of the implemented inference result on observation. For
example, it can judge if a published P-value is valid with respect to the
uniformity as long as the inference procedure can be codified and the data are
available; .

e Comparison of the competiti‘ve inferences on the real observation. For
example, if we have conflicting inference result on the same observation, it can be
helpful in deciding which one is more reliable;

e Interface from the Bayesian inference to the frequentist one. For
example, it can suggest the confidence level of the Bayesian 95% credible region;

* Adjustment of frequentist inference. For example, the adjusted P-value
can also be provided satisfying the uniformity criterion from a hypothesis test
procedure found to be invalid; and

® A general tool for measuring general sampling properties as well as
ideal frequentist sampling properties. For example, the RSM can be used. in
inspecting the sensitivity of the Bayesian inferences on the repeated samples. This
sensitivity analysis of Bayesian inference for some reasonable priors would be a

Bayesian point-of-view justification for a given Bayesian methodology.
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