The Haenam Pb-Zn skarn deposit is located at the Hwawon peninsula in the southwestern part of the Ogcheon Metamorphic Belt. The deposit is developed along the contact between limestone of the Ogcheon group and Cretaceous quartz porphyry. Petrography of ore samples, chemical composition of skarn and ore minerals, and geochemistry of the related igneous rocks were investigated to understand the characteristics of the skarn mineralization. Skarn zonation consists of garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone, pyroxene+garnet+quartz${\pm}$calcite zone, calcite+pyroxene${\pm}$garnet zone, quartz+calcite${\pm}$pyroxene zone, and calcite${\pm}$chlorite zone in succession toward carbonate rock. Garnet commonly shows zonal texture comprised of andradite and grossular. Pyroxene varies from Mn-hedenbergite to diopside as away from the intrusive rock. Chalcopyrite occurs as major ore mineral near the intrusive rock, and sphalerite and galena tend to increase as going away. Electron probe microanalyses revealed that FeS contents of sphalerite become decreased from 5.17 mole % for garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone to 2.93 mole %, and to 0.40 mole % for calcite+pyroxene${\pm}$garnet zone, gradually. Ag and Bi contents also decreased from 0.72 wt.% and 1.62 wt.% to <0.01 wt.% and 0.11 wt.%, respectively. Thus, the Haenam deposit shows systematic variation of species and chemical compositions of ore minerals with skarn zoned texture. The related intrusive rock, quartz porphyry, expresses more differentiated characteristics than Zn-skarn deposit of Meinert(1995), and has relatively high$SiO_2$ concentration of 72.76~75.38 wt.% and shows geochemical features classified as calc-alkaline, peraluminous igneous rock and volcanic arc tectonic setting.
울진 연.아연 광사의 Ca석류석은 결정화학적 성질의 차이에 따라 색, 경도, 비중과 같은 물리적 특성이 달라진다. 가기 다른 색을 보여주는 네가지의 석류석에 대하여 전자현미분석, X-선 회절분석, 뫼스바우어 및 적외선 분광분석등을 실시하여 화학적, 구조적 및 결정화학적 특징을 연구하였으며 광학적 및 물리적 특성도 연구되었다. 화학분석에 의하면 Fe 함량이 0.35에서 1.92%로 증가함에 따라 석류석의 색이 연분홍, 황록색, 적갈색 및 암갈색의 순으로 변한다. 이러한 Al에 대한 Fe의 치환은 단위포의 크기에도 영향을 미쳐 11.91$\AA$에서 12.06$\AA$으로 단위포의 크기가 증가한다. 뫼스바우어 계수에 따르면 Fe치환에 따른 Y-O 거리의 증가로 $\delta$값이 0.372에서 0.389mm/sec로 일정하게 증가한다. 또한 능을 고유하며 이웃하는 X십이면체에 영향을 주어 내부대칭도를 떨어뜨리게 된다. 이러한 현상은 적외선 스펙트럼의 360~300cm-1의 영역에서 그로슐라에는 관찰되지 않는 수개의 흡수선이 안드라다이트에서는 관찰된다. 한편 소량의 Fe2+가 그로슐라에서만 관찰됨을 미루어 석류석의 생성이 용역내으 낮은 산소분압에 영향을 받았을 것으로 추측된다.
Structural sites which cations can occupy in garnet structure are centers of the tetrahedron, octahedron, and distorted cube sharing edges with the tetrahedron and octahedron. Among them, the size of cation occuping at tetrahedral site (the center of tetrahedron) is closely related with the size of a unit cell of garnet. Accordingly, garnet containing iron with relative large ionic radii in tetrahedral site can be considered as a promising matrix for the immobilization of the elements with large ionic radii, such as actinides in radioactive wastes. We synthesized several garnets with the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$, and studied their properties and phase relations under various conditions. Mixed samples were fabricated in a pellet form under a pressure of $200{\~}400{\cal}kg/{\cal}cm^2$ and were sintered in the temperature range of $1100\~1400^{\circ}C$ in air and under oxygen atmospheres. Phase identification and chemical analysis of synthesized samples were conducted by XRD and SEM/EDS. In results, garnet was obtained as the main phase at $1300^{\circ}C$, an optimum condition in this system, even though some minor phases like perovskite and unknown phase were included. The compositions of garnet and perovskite synthesized from the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$ were ranged $[Ca_{l.2-1.8}Gd_{0.9-1.4}Ce_{0.3-0.5}]^{VIII}[Zr_{0.8-1.3}Fe_{0.7-1.2}]^{VI}[Fe_{2.9-3.1}]^{IV}O_{12}$ and $Ca_{0.1-0.5}Gd_{0.0-0.8}Ce_{0.1-0.5}\;Zr_{0.0-0.2}Fe_{0.9-1.1}O_3$, respectively. Ca content was exceeded and Ce content was depleted in the 8-coordinated site, comparing to the initial batch composition. This phenomena was closely related to the content of Zr and Fe in the 6-coordinated site.
The Charnockite in Sancheong region is quarzofeldspathic rock containing orthopyroxene and garnet with a color dark than common granitic rocks. The Chamockite are mostly massive and medium to coarse-grained with K-feldspar phenocryst, but reveal weak foliation. The rock consist mainly of quartz, K-feldspar, plagioclase and orhopyroxene, with biotite, garnet, and anthophyllite. In petrochemistry, the Chamockite has 61-65% $SiO_2$ contents, varying gradually into the margin contacted with orthogneiss, which have compositions of felsic igneous rocks. Major element show almost systematical variation with those of the marginal orthogneisses, except the hornblende gneiss and anorthosite. The Charnockite and orthogneisses show the tholeiitic differentiational trend. Trace and rare earth element abundance patterns in the Charnockite show remarkable negative Sr and Eu anomalies similar to orthogneisses, but different from the hornblende gneiss and anorthosite. Eu contents of the Charnockite are richer than that of orthogneisses. The metamorphic condition of the Charnockite were tested by an orthopyroxene-garnet geotherrnorneter and a plagioclase-garnet geobarometer. Estimated P-T conditions are about $761^{\circ}C$ and 7 kbar at peak metamorphism, but $653^{\circ}C$ and 6.4 kbar at retrograde metamorphism. This suggests that the Charnockite have from an early stage of high-grade metamorphism to represent the granulite facies and then to a late stage medium-grade metamorphism belonging to the amphibolite facies.
Precambrian metamorphic rocks of the Gapyeong-Cheongpyeong area consist of banded gneiss, augen gneiss, leucocratic gneiss, quartz schist and quartzite, together with minor intercalations of serpentinite, amphibolite and marble. Mineral assemblages of meta-sedimentary rocks are classified into three types: sillimanite-free; sillimanite-bearing; and sillimanite+K-feldspar-bearing assemblages. Compositions of metamorphic phases depend on the type of mineral assemblages. In particular, the Ca contents of plagioclase and garnet are high in sillimanite-free assemblges. Kyanite occurs in three samples, and coexists with sillimanite in one sample. The presence of kyanite indicates that metamorphic rocks of the study area have experienced the Barrovian type metamorphism. Peak metamorphic conditions estimated from various geothermobarometers and phase equilibria are 618-674$^{\circ}C$ and 6.5${\pm}$2.0 kbar for sillimanite-free assemblages, and 701-740$^{\circ}C$ and 4.4${\pm}$0.8 kbar for sillimanite-bearing assemblages, respectively. Furthermore, a clockwise P-T-time path is deduced for the study area, based on the following observations: (1) the polymorphic transition of kyanite to sillimanite, (2) the occurrence of sillimanite and K-feldspar belonging to the upper amphibolite facies, and finally (3) the retrograde metamorphism characterized by muscovite-, chlorite-, and actinolite-bearing assemblages.
This study analyzed spectroscopic methods for characterization of skarn minerals and sphalerite occurring in Dangdu ore deposit, and effectiveness of portable spectrometer in skarn mineral resources exploration is discussed. The spectroscopic analyses identified clinopyroxene, garnet, epidote, calcite, chlorite and sphalerite where spectral curves of clinopyroxene, garnet, epidote, and sphalerite show single mineral spectral characteristics and those of chlorite are in a mixed form with calcite and clinopyroxene. The assessment of spectroscopic analyses based on XRD analysis and microscopic observation reveals that clinopyroxene, garnet, epidote correspond well with more than 80% of detection, but sphalerite, chlorite, and calcite showed below 50% of detection rate. It is expected that skarn deposit exploration using a portable spectrometer is more effective in detection of clinopyroxene, garnet, and epidote whereas spectroscopic data of sphalerite, chlorite, and calcite needs to be utilized as a supplementary data. For the effective detection of chlorite and calcite, their content in the samples needs to be sufficient.
The Gukjeon Pb-Zn mine was recognized as skarn deposits which replaced the limestone layer of the Jeongkansan Formation by intrusion of biotite granite in late Cretaceous. The Jeongkansan Formation is mainly composed of tuffaceous shale, and interlayers of sandstone, andesitic tuff, limestone, and conglomerate. The limestone layer is located in the lower part of the Jeongkansan Formation with 6~8 m in thickness and about 500 m in length. The Gukjeon deposits are divided into the Jukgang ore bodies once mined underground and the eastern ore bodies. Main ores are sphalerite and galena, in association with small amounts of chalcopyrite, arsenopyrite, pyrite, and pyrrhotite, etc. Skarns mainly consist of clinopyroxenes and Ca-garnets, associated with actinolite, chlorite, axinite, and calcite, etc. The Jukgang ore bodies show symmetrical distribution of zoning outward, representing clinopyroxene (hedenbergite) zone, clinopyroxene-garnet (grossular) zone, garnet (andradite) zone, and alteration zone of hornfels. $Fe^{2+}$ contents in clinopyroxenes increase with decreasing sphalerite grade. Sphalerite ores are found in all zones and $Fe^{2+}$ contents in sphalerite increase in the same way as those in clinopyroxenes, implying that clinopyroxene and sphalerite are closely related each other. It is concluded that the Gukjeon ores occurred in the ore rich zone of high grade sphalerite with less pyrite in assoication with clinopyroxene.
In the Baekdong-Hongseong area, the southwestern part of the Gyeonggi Massif in Korea, ultramafic rocks occur as lenses within Precambrian granitic gneiss. At Baekdong area, ultramafic lens contains metabasite boudin which had undergone at least three stages of metamorphisms. The mineral assemblage on the first stage, Garnet+Sodic Augite+Hornblende+Plagioclase+Titanite, is recognized from the inclusions in garnet. The second stage is represented by the assemblage in matrix, Garnet+ Augite+Hornblende+Plagioclase, while the third stage is identified by the Hornblende+Plagjoclase $\pm$ Garnet assemblage in the symplectite formed around garnet. The P-T conditions of the first and the third stages are $690-780^{\circ}C$, 11.8-15.9 kb and $490-610^{\circ}C$, 4.0-6.3 kb, respectively. These data indicate that metabasite in Baekdong area had experienced a retrouade P-T path from the eclogite(EG) - high-pressure granulite (HG)-amphibolite (AM) transitional facies to the AM through HG-AM transitional facies. The core and rim of garnet in country granitic gneiss give $605-815^{\circ}C$, 10.7-16.0 kb and $575-680^{\circ}C$, 5.4-7.0 kb, respectively, indicating that the retrograde P-T path of granitic gneiss is similar to that of metabasite. Trace element data reveals that the tectonic setting of metabasite is island uc. The general geology, the metamorphic evolution, the mineral chemistry and the tectonic setting of Baekdong area indicate that the Baekdong-Hongseong area in Korea is a possible extension of the Sulu collision Belt in China. On the other hand, the Sm-Nd whole rock-garnet isochron ages of metabasites are 268.7-297.9 Ma which are older than the ages of UHP metamorphism (208-245 Ma) in the Dabie-Sulu Collision Belt. The older metamorphic ages suggest that collision between Sino-Korea and Yangtz plates may have occurred earlier in Korean Peninsula than China.
The ability of natural abrasives which were recovered from CRT glass polishing process was evaluated. Comparing the center line average roughness values of a glass polished with new pumice (Ra = $0.039{\mu}m$) and with new garnet (Ra = $0.031{\mu}m$), the glass surface polished with the recycled pumice and the garnet had less pits on the surface with smaller Ra values (Ra = $0.025{\mu}m$ for recycled pumice and Ra = 0.029 for recycled garnet). Recycled rouge contains amorphous glass fragments so that it should be used as a cement replacement rather than recycle into an abrasive. Nnatural abrasives, pumice and garnet powder, which are used in CRT glass polishing process can be recycled into abrasives so that it can help to minimize costs and environmental impact from the production of abrasives and the disposal of waste sludge.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.