Synthesis of Garnet in the Ca-Ce-Gd-Zr-Fe-O System

Ca-Gd-Ce-Zr-Fe-O계에서의 석류석 합성 연구

  • Chae Soo-Chun (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang Young-Nam (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bae In-Kook (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yudintsev S.V. (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry)
  • Published : 2005.04.01

Abstract

Structural sites which cations can occupy in garnet structure are centers of the tetrahedron, octahedron, and distorted cube sharing edges with the tetrahedron and octahedron. Among them, the size of cation occuping at tetrahedral site (the center of tetrahedron) is closely related with the size of a unit cell of garnet. Accordingly, garnet containing iron with relative large ionic radii in tetrahedral site can be considered as a promising matrix for the immobilization of the elements with large ionic radii, such as actinides in radioactive wastes. We synthesized several garnets with the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$, and studied their properties and phase relations under various conditions. Mixed samples were fabricated in a pellet form under a pressure of $200{\~}400{\cal}kg/{\cal}cm^2$ and were sintered in the temperature range of $1100\~1400^{\circ}C$ in air and under oxygen atmospheres. Phase identification and chemical analysis of synthesized samples were conducted by XRD and SEM/EDS. In results, garnet was obtained as the main phase at $1300^{\circ}C$, an optimum condition in this system, even though some minor phases like perovskite and unknown phase were included. The compositions of garnet and perovskite synthesized from the batch composition of $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$ were ranged $[Ca_{l.2-1.8}Gd_{0.9-1.4}Ce_{0.3-0.5}]^{VIII}[Zr_{0.8-1.3}Fe_{0.7-1.2}]^{VI}[Fe_{2.9-3.1}]^{IV}O_{12}$ and $Ca_{0.1-0.5}Gd_{0.0-0.8}Ce_{0.1-0.5}\;Zr_{0.0-0.2}Fe_{0.9-1.1}O_3$, respectively. Ca content was exceeded and Ce content was depleted in the 8-coordinated site, comparing to the initial batch composition. This phenomena was closely related to the content of Zr and Fe in the 6-coordinated site.

석류석 구조에서, 양이온이 점할 수 있는 구조적 위치는 사면체, 팔면체 및 이들과 능을 공유하고 있는 배위다면체의 중심 등이다. 이들 중, 사면체의 자리를 차지하는 양이온의 크기는 석류석의 단위포의 크기와 밀접한 관계를 가진다. 따라서 4-배위 자리에 비교적 이온반경이 큰 철을 함유하고 있는 석류석은 방사성 폐기물 내에 함유된 비교적 이온반경이 큰 악티나이드 원소를 고정시키기 위한 유망한 매트릭스로써 고려될 수 있다. 따라서 본 연구에서는 $Ca_{1.5}GdCe_{0.5}ZrFeFe_3O_{12}$인 조성을 가진 석류석을 합성하여 이들의 상평형 관계 및 특성을 연구하였다. 혼합된 시료는 $200{\~}400{\cal}kg/{\cal}cm^2$의 압력으로 성형한 후, $1100{\~}1400^{\circ}C$ 범위에서 온도 및 분위기를 변화시키면서 소결하였으며, 합성된 시료는 XRD 및 SEM/EDS를 사용하여 상분석과 정량분석을 실시하였다. 실험결과, 석류석은 소결온도 $1300^{\circ}C$에서 최적의 합성상을 얻을 수 있었지만, 미량의 페로브스카이트 및 미지의 상이 공존하였다. 석류석과 페로브스카이트의 화학조성은 각각 $[Ca_{l.2-1.8}Gd_{0.9-1.4}Ce_{0.3-0.5}]^{VIII}[Zr_{0.8-1.3}Fe_{0.7-1.2}]^{VI}[Fe_{2.9-3.1}]^{IV}O_{12}$$Ca_{0.1-0.5}Gd_{0.0-0.8}Ce_{0.1-0.5}\;Zr_{0.0-0.2}Fe_{0.9-1.1}O_3$ 이었다. 특히 화학양론적 조성과 비교 시, 합성된 석류석의 8-배위 자리를 점하고 있는 Ca의 초과 및 Ce의 결핍된 양상을 보였다. 이는 6-배위 자리에서의 Zr 및 Fe의 화학조성과 밀접한 관계를 지닌다.

Keywords

References

  1. 장영남, 채수천, 배인국, Yudintsev, S.V. (2002) 새로운 파이로클로어의 합성 및 결정화학적 특정. 한국광물학회지, 15권, p. 78-84
  2. 채수천, 장영남, 배인국, Yudintsev, S.V. (2003) 고준위 방사성폐기물의 고정화를 위한 Fe-석류석 합성 연구. 한국광물학회지, 16권, p. 307-320
  3. 채수천 (2004) 방시정폐기물의 고정화기술. 광물과 산업, 17권, p. 53-67
  4. 채수천, 배인국, 장영남, Yudintsev, S.V. (2004) Ca-Ce-Hf-Ti-O System에서의 파이로클로어 합성. 자원환경지질, 37권, p. 375-381
  5. Burakov, RE: and Anderson, E.B. (1998) Development of Crystalline ceramic for immobilization of TRU wastes in Y.G. Khlopin Radium Institute. Proc. of the NUCEF '98 International Conference, JAERI-Conf. 99-004 (Part 1), p. 307-326
  6. Burakov, RE. and Anderson, E.B. (2000) Experience of Y.G. Khlopin Radium Institute on synthesis and investigation of Pu-doped ceramics, Plutonium Future- The Science. AlP Conf. Proc., Melville, NY. 2000, p. 159-160
  7. Ebbinghaus B.B., VanKonenburg R.A., Vance, E.R, Iostsons, A., Anthony, R.G., Philip, C.V. and Wronkiewicz, D.J. (1995) Status of Plutonium Ceramic Immobilization processes and Immobilization Forms, Report No. CoONF-951259. Proceedings: Plutonium stabilization & immobilization workshop, Final Proceedings. Dec. 12-14, Washington, D.C. Sponsored by the U.S. Department of Energy, Washington, D.C. (U.S.A.). pages: 10. Size: 449kb
  8. Hatch, L.P. (1953) Ultimate disposal of radioactive wastes. Am. Sci. v. 41, p. 410-421
  9. Luo S., Zhu X., Tang B. (1998) Actinides containment by using zirconolite-rich Synroc. In: Proceedings of International Meeting on Nuclear and Hazardous Waste Management (Spectrum 98), American Nuclear Society, La Grange Park, IL, p. 829-833
  10. McCarthy, G,J. (1973) Quartz-Matrix isolation of radioactive wastes, J. Mater. Sci. v. 8, p. 1358-1359 https://doi.org/10.1007/BF00549353
  11. McCarthy, G,J. (1976) High-level waste ceramics. Trans. Am. Nucl. Soc. v, 23, p. 168-169
  12. McCarthy, GJ., and Davidson, M.T. (1975) Ceramic nuclear waste forms: I. Am. Ceram. Soc. Bull., v. 54, p. 782-786
  13. Morgan, P.E.D., Clarke, D.R., Jantzen, C.M., and Harker, A.B. (1981) High-alumina tailored nuclear waste ceramics. J. Am. Ceram. Soc. Bull., v. 64, p. 249-258 https://doi.org/10.1111/j.1151-2916.1981.tb09597.x
  14. Pirzada, M., Grimes, R.W., and Maguire, J.E. (2003) Incorporationof divalent ions in A2B207 pyrochlores. Solid State Ionics, v. 161, p. 81-91 https://doi.org/10.1016/S0167-2738(03)00165-6
  15. Ringwood A.E. (1985) Disposal of high-level nuclear waste: a geological perspective. Mineralogical Magazine, v. 49, p. 159-176 https://doi.org/10.1180/minmag.1985.049.351.04
  16. Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M., and Ramm, E.J. (1988) Synroc; Radioactive waste forms for the future. Edited by W. Lutze and Ewing, R.C., Elsevier, North-Holland, Amsterdam, Netherlands, p. 233.-334
  17. Sobolev, I.A., Stefanovsky, S.V. and Lifanov, F.A. (1995) Synthetic melted rock-type wasteforms. In: Scientific Basis for Nuclear Waste management-XVIII. MRS Symposia Proceedings, v. 353, p. 833-838
  18. Vance E.R., Begg B.D., Day R.A., Ball C.J. (1995) Zirconolite-rich ceramics for actinide wastes. In: Scientific Basis for Nuclear Waste Management-XVIII. MRS Symposia Proceedings, v. 353, p.767-774
  19. Yudintsev, S.Y. (2001) Incorporation of U, Th, Zr, and Gd into the garnet-structured host. Proc. of the ICEM'01 (the 8-th Int. Conf. Rad. Waste Mangement and Environ. Remed.) Sept. 30-Oct.04, 2001, Brugge, Belgium
  20. Yudintsev, S.V., Lapina, M.I., Ptashkin, A.G., Ioudintseva, T.S., Utsunomiya, S., Wang, L.M. and Ewing, R.C. (2002) Accommodation of Uranium into the Garnet Structure. Proc. of the MRS Symp., v. 713, JJ11.28.1-4