Analysis of Aquifer Test Data in Fractured Aquifers and the Application of the Generalized Radial Flow

균열암반에서의 양수시험자료 해석과 일반 방사상 유동모델의 적용성 연구

  • Seong Hyeonjeong (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Yongie (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee Chul-Woo (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Kue-Young (Korea Institute of Geoscience and Mineral Resources) ;
  • Woo Nam-Chil (Dept. of Earth System Sciences, Yonsei University)
  • Published : 2005.04.01

Abstract

Data from 122 pumping tests were obtained from 100 boreholes in granites, volcanic rocks, metamorphic rocks, and Cretaceous and Tertiary sedimentary rocks, and then were analyzed using AQTESOLV. Results from 86 of the 122 tests ($71\%$) have an analytical solution corresponding to Theis (1935), Cooper-Jacob (1946), Papadopulos-Cooper (1967), Hantush (1962), Moench (1985), or Hantush-Jacob (1955), whereas the remaining 36 results ($29.5\%$) do not correspond to any of the analytical methods. Of the 86 results, only 17 match the Theis and Cooper-Jacob methods, indicating that the basic methods fer pumping test analysis are useful far only $14\%$ of the total data. This suggests that analytical solutions derived using leaky boundary conditions are appropriate for the analysis of pumping test data in fractured aquifers in this study. Furthermore, the results show the importance of carefully selecting an appropriate model for the analysis of pumping test data. Results from the 122 pumping tests were also analyzed using the GRF model. Using the Barker method, the results show that 77 of the 122 tests ($63\%$) have dimensions ranging between 1.1-2.9. Of these 77 solutions, ($39(44.2{\%})$) have a fractional dimension of 1.1-1.9, ($26(6.5{\%})$) show 2-dimensional radial flow also applicable to the Theis method, and ($38(49.3{\%})$) have dimensions of 2.1-2.9. The results show that groundwater flows according to a fractional flow dimension in fractured aquifers.

이 연구는 양수시험 해석해(Theis, 1935; Cooper-Jacob, 1946; Papadopulos-Cooper, 1967; Hantush, 1962a,b; Moench, 1985; Hantush-Jacob, 1955) 및 일반 방사상 유동 모델을 이용하여 우리나라의 균열암반 대수층(화강암, 화산암, 변성암, 백악기퇴적암, 제3기 퇴적암에 굴착된 100개 조사공)에서 수행되어진 양수시험으로부터 얻은 122개의 양수시험자료(수위강하 자료)를 분석하여 종합한 것이다. AQTESOLV 전산프로그램을 이용한 양수시험자료 분석에 의 하면, 122개 자료중 86개($71\%$)의 자료들이 이 연구에 사용된 해석해와 일치하며, 앙수시험자료 해석해 중에 누수(leaky) 및 경계조건(boundary condition)을 고려한 해석해들이 53개($43\%$)로 가장 많이 나타났다. 따라서, 양수시험자료의 해석은 균열암반 대수층의 수리지질학적 특성에 적합한 개념모델의 설정이 중요하다. 일반 방사상 유동(GRF)모델을 적용해보면, 122개의 자료 중 77개($63\%$)의 자료들이 Barker(1988)의 표준곡선에 의한 차원(1.1차원-2.9차원)을 보여준다. 이중 $44.2\%$에 해당하는 39개 자료가 1.1차원과 1.9차원 사이의 실수 유동차원을 보여주는 반면에 26개($6.5\%$)만이 Theis 이론에 맞는 2차원의 방사상 흐름을 보여주며, 38개($49.3\%$)는 2.1차원에서 2.9차원에 속한다. 따라서 우리나라 균열암반 대수층에서 지하수 유동은 대부분 실수차원의 유동을 보여주는 것으로 평가된다.

Keywords

References

  1. 이철우, 함세영, 조성현 (1999) GRF 모델을 통한 대수층의 형태 연구. 대한지구 물리학회 제 2차 정기총회 및 학술발표회, p.22-24
  2. 함세영 (1995) Hydraulic characteristics of fractured aquifers in south korea applying fractal models(I). Jour. Geol. Soc. Korea., 31(4), p. 467-482
  3. Allegre, C.J., Le Mouel, J.L. and et Provost, A. (1982) Scaling rules in rock fractures and possible implications for earthquake prediction. Nature., 297, p. 47-49 https://doi.org/10.1038/297047a0
  4. Barker, J.A. (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour, Res., 24(10), p. 1796-1804 https://doi.org/10.1029/WR024i010p01796
  5. Berkowitz, B., Bear, J. and Braester, C. (1988) Continuum model for contaminant transport in fractured porous formations. Water Resour. Res., 24(3), p. 1225-1236 https://doi.org/10.1029/WR024i008p01225
  6. Billaux, D. (1990) Hydrogeologie des milieux fractures: geometric, connective et comportement hydraulique. These Doct, ENSMP., p. 277
  7. Cooper, H.H. and Jacob, C.E. (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. American Geophysical Union Transa-ction., 27, p. 526-534 https://doi.org/10.1029/TR027i004p00526
  8. Gernand, J.D. and Heidtman, J.P. (1997) Detailed pumping tests to characterize a fractured bedrock aquifer, Groundwater., 35(4), p. 632-637 https://doi.org/10.1111/j.1745-6584.1997.tb00128.x
  9. Hamm, S-Y. and Bidaux, P. (1994a) Ecoulements transitoires en geometric fractale avec drainance : theorie et application, C. R. Acad. Sci. Paris, 318, serie II., 2, p. 227-233
  10. Hamm, S-Y. and Bidaux, P. (1994b) Stationary dual-porosity fractal model of groundwater flow in fractured aquifers. The Jour. Eng. Geol., 4, p. 127-138
  11. Hantush, M.S. and Jacob, C.E. (1955) Non-steady radial flow in an infinite leaky aquifer. Am. Geophys. Union Trans., 36, p. 95-100 https://doi.org/10.1029/TR036i001p00095
  12. Hantush, M.S. (1962b) Drawdown around a partially penetrating well. Jour. of the Hyd. Div., Proc. of the Am. Soc. of Civil Eng., 87(HY4), p. 83-98
  13. Hantush, M.S. (1962a) Flow of ground water in sands of nonuniform thickness, 3. Flow to wells. Jour. Geophys. Res., 67(4), p. 1527-1534 https://doi.org/10.1029/JZ067i004p01527
  14. Moench, A.F. (1985) Transient flow to a large-diameter well in an aquifer with storative semiconfining layers. Water Resour. Res., 21(8), p. 1121-1131 https://doi.org/10.1029/WR021i008p01121
  15. Neuman, S.P. (1975) Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resour. Res., p. 329-342
  16. Papadopulos, I.S. and Cooper, H.H. (1967) Drawdown in a well of large diameter. Water Resour. Res., 3, p. 241-244 https://doi.org/10.1029/WR003i001p00241
  17. Theis, C.V. (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophysical Union Transaction, 16, p. 519-524 https://doi.org/10.1029/TR016i002p00519
  18. Velde, B., Dubois, J., Moore, D. and et Touchard, J. (1991) Fractal patterns of fractures in granite. Earth and Planetary Science Letters, 104, p. 25-35 https://doi.org/10.1016/0012-821X(91)90234-9