• Title/Summary/Keyword: 생성AI

Search Result 649, Processing Time 0.031 seconds

Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit (Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석)

  • Hye-In Na;Byeong-Hee Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT, as a representative chatbot leveraging generative artificial intelligence technology, is used valuable not only in scientific and technological domains but also across diverse sectors such as society, economy, industry, and culture. This study conducts an explorative analysis of user sentiments and needs for ChatGPT by examining global social media discourse on Reddit. We collected 10,796 comments on Reddit from December 2022 to August 2023 and then employed keyword analysis, sentiment analysis, and need-mining-based topic modeling to derive insights. The analysis reveals several key findings. The most frequently mentioned term in ChatGPT-related comments is "time," indicative of users' emphasis on prompt responses, time efficiency, and enhanced productivity. Users express sentiments of trust and anticipation in ChatGPT, yet simultaneously articulate concerns and frustrations regarding its societal impact, including fears and anger. In addition, the topic modeling analysis identifies 14 topics, shedding light on potential user needs. Notably, users exhibit a keen interest in the educational applications of ChatGPT and its societal implications. Moreover, our investigation uncovers various user-driven topics related to ChatGPT, encompassing language models, jobs, information retrieval, healthcare applications, services, gaming, regulations, energy, and ethical concerns. In conclusion, this analysis provides insights into user perspectives, emphasizing the significance of understanding and addressing user needs. The identified application directions offer valuable guidance for enhancing existing products and services or planning the development of new service platforms.

Suitability Evaluation Method for Both Control Data and Operator Regarding Remote Control of Maritime Autonomous Surface Ships (자율운항선박 원격제어 관련 제어 데이터와 운용자의 적합성 평가 방법)

  • Hwa-Sop Roh;Hong-Jin Kim;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.214-220
    • /
    • 2024
  • Remote control is used for operating maritime autonomous surface ships. The operator controls the ship using control data generated by the remote control system. To ensure successful remote control, three principles must be followed: safety, reliability, and availability. To achieve this, the suitability of both the control data and operators for remote control must be established. Currently, there are no international regulations in place for evaluating remote control suitability through experiments on actual ships. Conducting such experiments is dangerous, costly, and time-consuming. The goal of this study is to develop a suitability evaluation method using the output values of control devices used in actual ship operation. The proposed method involves evaluating the suitability of data by analyzing the output values and evaluating the suitability of operators by examining their tracking of these output values. The experiment was conducted using a shore-based remote control system to operate the training ship 'Hannara' of Korea National Maritime and Ocean University. The experiment involved an iterative process of obtaining the operator's tracking value for the output value of the ship's control devices and transmitting and receiving tracking data between the ship and the shore. The evaluation results showed that the transmission and reception performance of control data was suitable for remote operation. However, the operator's tracking performance revealed a need for further education and training. Therefore, the proposed evaluation method can be applied to assess the suitability and analyze both the control data and the operator's compliance with the three principles of remote control.

Automatic scoring of mathematics descriptive assessment using random forest algorithm (랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점)

  • Inyong Choi;Hwa Kyung Kim;In Woo Chung;Min Ho Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.165-186
    • /
    • 2024
  • Despite the growing attention on artificial intelligence-based automated scoring technology as a support method for the introduction of descriptive items in school environments and large-scale assessments, there is a noticeable lack of foundational research in mathematics compared to other subjects. This study developed an automated scoring model for two descriptive items in first-year middle school mathematics using the Random Forest algorithm, evaluated its performance, and explored ways to enhance this performance. The accuracy of the final models for the two items was found to be between 0.95 to 1.00 and 0.73 to 0.89, respectively, which is relatively high compared to automated scoring models in other subjects. We discovered that the strategic selection of the number of evaluation categories, taking into account the amount of data, is crucial for the effective development and performance of automated scoring models. Additionally, text preprocessing by mathematics education experts proved effective in improving both the performance and interpretability of the automated scoring model. Selecting a vectorization method that matches the characteristics of the items and data was identified as one way to enhance model performance. Furthermore, we confirmed that oversampling is a useful method to supplement performance in situations where practical limitations hinder balanced data collection. To enhance educational utility, further research is needed on how to utilize feature importance derived from the Random Forest-based automated scoring model to generate useful information for teaching and learning, such as feedback. This study is significant as foundational research in the field of mathematics descriptive automatic scoring, and there is a need for various subsequent studies through close collaboration between AI experts and math education experts.

The Influence of ChatGPT Literacy on Academic Engagement: Focusing on the Serial Mediation Effect of Academic Confidence and Perceived Academic Competence (챗GPT 리터러시가 학업열의에 미치는 영향: 학업자신감과 지각된 학업역량의 이중매개효과를 중심으로)

  • Eunsung Lee;Longzhe Quan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.565-574
    • /
    • 2024
  • ChatGPT is causing significant reverberations across all sectors of our society, and this holds true for the field of education as well. However, scholarly and societal discussions regarding ChatGPT in academic settings have primarily focused on issues such as plagiarism, with relatively limited research on the positive effects of utilizing generative AI. Additionally, amidst the educational crisis of the post-COVID era, there is a growing recognition of the need to enhance academic engagement. In light of these concerns, we investigated how academic engagement varies based on students' levels of ChatGPT literacy and examined whether students' academic confidence and perceived academic competence serve as mediators between ChatGPT literacy and academic engagement. An analysis using SPSS was conducted on the data collected from 406 college students. The results showed that ChatGPT literacy had a positive effect on academic engagement, and academic confidence mediated the relationship between ChatGPT literacy and academic engagement. Also, when the mediating effect of perceived academic competence was significant only when it was serially mediated. Based on these findings, we discussed the theoretical contributions of identifying the theoretical mechanism between ChatGPT literacy and academic engagement. In addition, practical implications regarding the importance of ChatGPT literacy education were described.

A Development of Flood Mapping Accelerator Based on HEC-softwares (HEC 소프트웨어 기반 홍수범람지도 엑셀러레이터 개발)

  • Kim, JongChun;Hwang, Seokhwan;Jeong, Jongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.173-182
    • /
    • 2024
  • In recent, there has been a trend toward primarily utilizing data-driven models employing artificial intelligence technologies, such as machine learning, for flood prediction. These data-driven models offer the advantage of utilizing pre-training results, significantly reducing the required simulation time. However, it remains that a considerable amount of flood data is necessary for the pre-training in data-driven models, while the available observed data for application is often insufficient. As an alternative, validated simulation results from physically-based models are being employed as pre-training data alongside observed data. In this context, we developed a flood mapping accelerator to generate flood maps for pre-training. The proposed accelerator automates the entire process of flood mapping, i.e., estimating flood discharge using HEC-1, calculating water surface levels using HEC-RAS, simulating channel overflow and generating flood maps using RAS Mapper. With the accelerator, users can easily prepare a database for pre-training of data-driven models from hundreds to tens of thousands of rainfall scenarios. It includes various convenient menus containing a Graphic User Interface(GUI), and its practical applicability has been validated across 26 test-beds.

Methodology for Generating UAV's Effective Flight Area that Satisfies the Required Spatial Resolution (요구 공간해상도를 만족하는 무인기의 유효 비행 영역 생성 방법)

  • Ji Won Woo;Yang Gon Kim;Jung Woo An;Sang Yun Park;Gyeong Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.400-407
    • /
    • 2024
  • The role of unmanned aerial vehicles (UAVs) in modern warfare is increasingly significant, making their capacity for autonomous missions essential. Accordingly, autonomous target detection/identification based on captured images is crucial, yet the effectiveness of AI models depends on image sharpness. Therefore, this study describes how to determine the field of view (FOV) of the camera and the flight position of the UAV considering the required spatial resolution. Firstly, the calculation of the size of the acquisition area is discussed in relation to the relative position of the UAV and the FOV of the camera. Through this, this paper first calculates the area that can satisfy the spatial resolution and then calculates the relative position of the UAV and the FOV of the camera that can satisfy it. Furthermore, this paper propose a method for calculating the effective range of the UAV's position that can satisfy the required spatial resolution, centred on the coordinate to be photographed. This is then processed into a tabular format, which can be used for mission planning.

The Effect of Al2O3 upon Firing Range of Clay-EAF Dust System Body (Clay-EAF Dust계 소지의 소결온도 범위에 미치는 Al2O3의 영향)

  • 김광수;강승구;이기강;김유택;김영진;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.494-500
    • /
    • 2003
  • The effects of $Al_2$O$_3$ addition upon the sintering range of clay-EAF dust (the specified wastes produced from steel making process) system body which would be used as a constructing bricks were investigated. The slope of apparent density to sintering temperature decreased for Clay-dust body containing 5~15 wt% A1203 sintered at 1200-125$0^{\circ}C$, and the absorption(%) of specimen sintered above 125$0^{\circ}C$ decreased due to the formation of open pores produced by pore bloating. For the specimen without any $Al_2$O$_3$ addition sintered at 1275$^{\circ}C$, the major phase was cristobalite, the small amount of mullite (3Al$_2$O$_3$ 2SiO$_2$) formed and the hematite (Fe$_2$O$_3$) remained. In the Clay-dust system body containing $Al_2$O$_3$ 15 wt%, however, the cristobalite disappeared and the major phase was mullite. Also the part of $Al_2$O$_3$ reacted with hematite to form hercynite (FeAl$_2$O$_4$). From the these results, addition of $Al_2$O$_3$ to Clay-dust system body enlarges a sintering range; decreasing an apparent density and absorption slop to sintering temperature owing to consumption of liquid phase SiO$_2$ at higher temperature and gas-forming component Fe$_2$O$_3$ at reduced atmosphere which would decrease an amount of liquid formed and increase the viscosity of the liquid produced during the sintering process.

A Research in Applying Big Data and Artificial Intelligence on Defense Metadata using Multi Repository Meta-Data Management (MRMM) (국방 빅데이터/인공지능 활성화를 위한 다중메타데이터 저장소 관리시스템(MRMM) 기술 연구)

  • Shin, Philip Wootaek;Lee, Jinhee;Kim, Jeongwoo;Shin, Dongsun;Lee, Youngsang;Hwang, Seung Ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.169-178
    • /
    • 2020
  • The reductions of troops/human resources, and improvement in combat power have made Korean Department of Defense actively adapt 4th Industrial Revolution technology (Artificial Intelligence, Big Data). The defense information system has been developed in various ways according to the task and the uniqueness of each military. In order to take full advantage of the 4th Industrial Revolution technology, it is necessary to improve the closed defense datamanagement system.However, the establishment and usage of data standards in all information systems for the utilization of defense big data and artificial intelligence has limitations due to security issues, business characteristics of each military, anddifficulty in standardizing large-scale systems. Based on the interworking requirements of each system, data sharing is limited through direct linkage through interoperability agreement between systems. In order to implement smart defense using the 4th Industrial Revolution technology, it is urgent to prepare a system that can share defense data and make good use of it. To technically support the defense, it is critical to develop Multi Repository Meta-Data Management (MRMM) that supports systematic standard management of defense data that manages enterprise standard and standard mapping for each system and promotes data interoperability through linkage between standards which obeys the Defense Interoperability Management Development Guidelines. We introduced MRMM, and implemented by using vocabulary similarity using machine learning and statistical approach. Based on MRMM, We expect to simplify the standardization integration of all military databases using artificial intelligence and bigdata. This will lead to huge reduction of defense budget while increasing combat power for implementing smart defense.

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.

Effects of Butanol Fraction of Pine Needle (Pinus Densiflora) on Serum Lipid Metabolism and Oxidative Stress in Rats (솔잎의 부탄올획분이 SD계 Rats의 지질대사와 산화적 스트레스에 미치는 영향)

  • 김현숙;이지혜;최진호;박수현;김대익;김창목
    • Journal of Nutrition and Health
    • /
    • v.35 no.3
    • /
    • pp.296-302
    • /
    • 2002
  • This study was designed to investigate the effects of a butanol extract of pine needles (Pinus densiflora Sieb et Zucc) on lipid metabolism and oxidative stress in rats. Twenty-eight male Sprague-Dawley (SD) rats were divided into four groups over a 45 days study period: the control group on a basic diet, and three experimental groups on three different dietary levels of the butanol fraction, specifically 25 mg (BuOH-25), 50 mg (BuOH-50), and 100 mg (BuOH-100) butanol fraction/kg body weight/day, thereby 0.025%, 0.05%, 0.1% of butanol extract of pine needles was added to basic diet respectively. At the end of the experimental period, body weights and food intakes were food intakes were not different among the four groups. Total and LDL-cholesterol levels were markedly decreased in the BuOH-25, BuOH-50, and BuOH-100 groups, respectively, as follows: 12.8%, 19.1% and 21.6% reductions in total cholesterol; and 10.2%, 15.6% and 23.7% reductions in LDL-cholesterol. However, HDL-cholesterol levels were significantly increased (by approximately 20%) in the serum of the BuOH-100 group only, compared with the control and other experimental groups. Atherogenic indices were also markedly decreased in the three experimental groups, by 24.8%, 30.4% and 36.2%, for each of the BuOH-25, BuOH-50, and BuOH-100 groups, respectively, compared with the control group. The levels of the hydroxyl radical (·OH) and of lipid peroxide (LPO) in the serum of the three experimental groups were significantly reduced, by 9.8%, 19.7% and 21.2%; and by 13.3%, 13.3% and 16.7%, for the BuOH-25, BuOH-50, and BuOH-100 groups, respectively Significant increases in serum superoxide dismutase (SOD) were observed in the BuOH-50 and BuOH-100 groups; specifically, 12.1% in the BuOH-50 group and 23.3% in the BuOH-100 group, compared with the control group. Significant increases in catalase (CAT) avtivities, of 24.7% in the BuOH-50 group and 29.2% in the BuOH-100 group, were also observed, compared to the control group. These results suggest that a butanol extract of pine needles could inhibit chronic degenerative disease through improving lipid metabolism, and could also effectively modulate the aging process attenuating oxidative stress.