• Title/Summary/Keyword: 생성AI

Search Result 648, Processing Time 0.034 seconds

An Exploratory Study on Advertising Copywriting Using ChatGPT - With the focus on in-depth interviews with college students majoring in advertising - (ChatGPT를 활용한 광고카피라이팅에 대한 탐색적 연구 - 광고전공 대학생 심층면접을 중심으로-)

  • Chung, Hae Won;Cho, Woo Ri
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.751-757
    • /
    • 2024
  • This study evaluates the effectiveness of advertising copywriting using the artificial intelligence language model, ChatGPT, and explores its potential applications and limitations within the advertising industry. We established five key research questions and conducted in-depth focus group interviews (FGI) with university students in Busan. The findings reveal that there was no significant preference difference between copies written by ChatGPT and human copywriters. However, ChatGPT's copies were particularly effective in age-targeted advertising but showed limitations in gender targeting and reflecting cultural contexts. Additionally, consumer acceptance of AI copywriting was generally positive, though concerns were raised about the creativity and naturalness of AI-generated copies. This research provides practical insights into how AI can be utilized in advertising content creation and stimulates discussion on the appropriate use of AI technology and ethical considerations within the industry. These results offer important implications for both advertising professionals and the academic community.

An Exploratory Study of Generative AI Service Quality using LDA Topic Modeling and Comparison with Existing Dimensions (LDA토픽 모델링을 활용한 생성형 AI 챗봇의 탐색적 연구 : 기존 AI 챗봇 서비스 품질 요인과의 비교)

  • YaeEun Ahn;Jungsuk Oh
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.191-205
    • /
    • 2023
  • Artificial Intelligence (AI), especially in the domain of text-generative services, has witnessed a significant surge, with forecasts indicating the AI-as-a-Service (AIaaS) market reaching a valuation of $55.0 Billion by 2028. This research set out to explore the quality dimensions characterizing synthetic text media software, with a focus on four key players in the industry: ChatGPT, Writesonic, Jasper, and Anyword. Drawing from a comprehensive dataset of over 4,000 reviews sourced from a software evaluation platform, the study employed the Latent Dirichlet Allocation (LDA) topic modeling technique using the Gensim library. This process resulted the data into 11 distinct topics. Subsequent analysis involved comparing these topics against established AI service quality dimensions, specifically AICSQ and AISAQUAL. Notably, the reviews predominantly emphasized dimensions like availability and efficiency, while others, such as anthropomorphism, which have been underscored in prior literature, were absent. This observation is attributed to the inherent nature of the reviews of AI services examined, which lean more towards semantic understanding rather than direct user interaction. The study acknowledges inherent limitations, mainly potential biases stemming from the singular review source and the specific nature of the reviewer demographic. Possible future research includes gauging the real-world implications of these quality dimensions on user satisfaction and to discuss deeper into how individual dimensions might impact overall ratings.

Artificial Intelligence-Based Video Content Generation (인공지능 기반 영상 콘텐츠 생성 기술 동향)

  • Son, J.W.;Han, M.H.;Kim, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.3
    • /
    • pp.34-42
    • /
    • 2019
  • This study introduces artificial intelligence (AI) techniques for video generation. For an effective illustration, techniques for video generation are classified as either semi-automatic or automatic. First, we discuss some recent achievements in semi-automatic video generation, and explain which types of AI techniques can be applied to produce films and improve film quality. Additionally, we provide an example of video content that has been generated by using AI techniques. Then, two automatic video-generation techniques are introduced with technical details. As there is currently no feasible automatic video-generation technique that can generate commercial videos, in this study, we explain their technical details, and suggest the future direction for researchers. Finally, we discuss several considerations for more practical automatic video-generation techniques.

The direction of development of the no code platform for AI model development (AI 개발을 위한 노 코드 플랫폼의 개발 방향)

  • Shin, Yujin;Yang, Huijin;Jang, Dayoung;Jang, Hyeonjun;Koh, Seokju;Han, Donghee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.172-175
    • /
    • 2021
  • 4차 산업혁명이 시작된 이래로 다양한 산업 분야에서 AI가 활용되고 있고, 그 중에서도 컴퓨터 비전 분야에서 딥러닝 기술이 각광받고 있다. 하지만 딥러닝 기술은 높은 전문 지식이 요구되어 관련 지식이 없는 일반인들은 활용하기 어렵다. 본 논문에서는 AI 관련 배경지식이 없는 사용자들도 UI를 통해 쉽게 이미지 분류 모델을 학습시킬 수 있는 노 코드 플랫폼에 관하여 기술하고, django 프레임워크를 이용해 웹 개발과 딥러닝 모델 학습을 통합 개발을 위한 아키텍처와 방향성을 제시하고자 한다. 사용자가 웹서버에 업로드한 이미지들을 웹 인터페이스를 통해 라벨링 하여 학습 데이터를 생성한 후, 이 데이터를 사용하여 모델을 학습시킨다. CNN 모델에 데이터를 학습시키는 과정과 생성된 모델 기반으로 이미지 예측하는 모듈을 통해 전문지식이 없는 사용자가 딥러닝 기술에 대해 쉽게 이해하고 이용하는 것을 기대할 수 있다.

  • PDF

Control of Multi-Home Devices Using AI Vision and Generative AI (AI 비전과 생성형 AI 를 이용한 멀티 홈 디바이스 제어)

  • Su-Min Hong;Su-Min Kim;Su-Hee Song;Chae-Yeon Ahn
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.1037-1038
    • /
    • 2023
  • 기술의 발전으로 인해 스마트 가전제품이 늘어나며 스마트 홈 기술이 주목을 받고 있다. 그러나 이러한 기술은 설정과정의 복잡성으로 사용자들이 쉽게 접근하기 어렵다. 특히 디지털 기기 사용에 익숙하지 않은 사용자들을 스마트 홈 기술로부터 소외시키는 결과를 낳고 있다. 본 논문에서는 사용자 친화적인 스마트 홈 시스템을 제안한다. 사용자의 시선 방향을 추적하여 디바이스를 선택하고 간단한 인터페이스의 컨트롤러로 디바이스를 손쉽게 조작할 수 있도록 한다. 또한, 생성형 인공지능과 RAG 를 결합하여 사용자가 가전제품과 자연스럽게 대화하며 정보를 얻을 수 있는 인터페이스를 제공한다.

A Survey on Deep Neural Networks for 3D Reconstruction from a 2D Image (단일 이미지 기반 3D 모델 생성을 위한 딥-뉴럴 네트워크 분류 및 성능비교)

  • Kim, MinGeyung;Choi, Yoo-Joo
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.715-718
    • /
    • 2022
  • 단일 이미지로부터 3D 모델을 생성하는 방법은 메타버스와 가상현실 콘텐츠에 대한 필요성이 높아짐에 따라, 보다 효율적인 모델 생성방법으로서 관심이 높아지고 있다. 본 논문에서는 단일 이미지로부터 3D 모델을 자동 생성하는 기존 딥-뉴럴 네트워크들을 대상으로, 생성되는 3D 모델의 유형에 따라 기존 네트워크들을 분류하고, 주요 딥-뉴럴 네트워크의 형태와 특징, 그리고 모델 생성의 성능을 분석하고자 한다.

Development of a Web Service for Cosmetics Recommendation based on an Artificial Intelligence for User Personal Color Generation (사용자 퍼스널 컬러 생성을 위한 인공지능 기반 화장품 추천 웹 서비스 개발)

  • Suk-Hyung Hwang;Min-Taek Lim;Hun-Tae Hwang;Seung-Jun Lee;Soo-Hwan Kim;Se-Woong Hwang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.461-463
    • /
    • 2023
  • MZ세대를 중심으로 자기관리를 열심히 하는 사람들이 증가함에 따라 화장의 기본이 되는 개인 피부톤(퍼스널 컬러)을 찾는 것이 중요시되고 있다. 현재 대다수 사람은 자신에게 어울리는 퍼스널 컬러를 찾기 위해 높은 비용을 지불하여 전문가를 이용하거나 객관적이고 정량화된 기준 없이 오랜 시간을 투자하여 스스로 퍼스널 컬러를 찾는 등 시간과 비용 측면에서의 한계점을 가지고 있다. 본 논문에서는 이를 보완하기 위해 이미지 기반 인공지능 기술(객체 탐지, 객체 분할, BeautyGAN)을 적용하여 데이터 기반의 정량적인 기준을 생성하고, 퍼스널 컬러에 알맞은 화장품 추천 웹 서비스를 제안한다.

  • PDF

Generative AI-based Exterior Building Design Visualization Approach in the Early Design Stage - Leveraging Architects' Style-trained Models - (생성형 AI 기반 초기설계단계 외관디자인 시각화 접근방안 - 건축가 스타일 추가학습 모델 활용을 바탕으로 -)

  • Yoo, Youngjin;Lee, Jin-Kook
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.13-24
    • /
    • 2024
  • This research suggests a novel visualization approach utilizing Generative AI to render photorealistic architectural alternatives images in the early design phase. Photorealistic rendering intuitively describes alternatives and facilitates clear communication between stakeholders. Nevertheless, the conventional rendering process, utilizing 3D modelling and rendering engines, demands sophisticate model and processing time. In this context, the paper suggests a rendering approach employing the text-to-image method aimed at generating a broader range of intuitive and relevant reference images. Additionally, it employs an Text-to-Image method focused on producing a diverse array of alternatives reflecting architects' styles when visualizing the exteriors of residential buildings from the mass model images. To achieve this, fine-tuning for architects' styles was conducted using the Low-Rank Adaptation (LoRA) method. This approach, supported by fine-tuned models, allows not only single style-applied alternatives, but also the fusion of two or more styles to generate new alternatives. Using the proposed approach, we generated more than 15,000 meaningful images, with each image taking only about 5 seconds to produce. This demonstrates that the Generative AI-based visualization approach significantly reduces the labour and time required in conventional visualization processes, holding significant potential for transforming abstract ideas into tangible images, even in the early stages of design.

An Exploratory Study on the Trustworthiness Analysis of Generative AI (생성형 AI의 신뢰도에 대한 탐색적 연구)

  • Soyon Kim;Ji Yeon Cho;Bong Gyou Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.79-90
    • /
    • 2024
  • This study focused on user trust in ChatGPT, a generative AI technology, and explored the factors that affect usage status and intention to continue using, and whether the influence of trust varies depending on the purpose. For this purpose, the survey was conducted targeting people in their 20s and 30s who use ChatGPT the most. The statistical analysis deploying IBM SPSS 27 and SmartPLS 4.0. A structural equation model was formulated on the foundation of Bhattacherjee's Expectation-Confirmation Model (ECM), employing path analysis and Multi-Group Analysis (MGA) for hypothesis validation. The main findings are as follows: Firstly, ChatGPT is mainly used for specific needs or objectives rather than as a daily tool. The majority of users are cognizant of its hallucination effects; however, this did not hinder its use. Secondly, the hypothesis testing indicated that independent variables such as expectation- confirmation, perceived usefulness, and user satisfaction all exert a positive influence on the dependent variable, the intention for continuance intention. Thirdly, the influence of trust varied depending on the user's purpose in utilizing ChatGPT. trust was significant when ChatGPT is used for information retrieval but not for creative purposes. This study will be used to solve reliability problems in the process of introducing generative AI in society and companies in the future and to establish policies and derive improvement measures for successful employment.

Korean Traditional Music Melody Generator using Artificial Intelligence (인공지능을 이용한 국악 멜로디 생성기에 관한 연구)

  • Bae, Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.869-876
    • /
    • 2021
  • In the field of music, various AI composition methods using machine learning have recently been attempted. However, most of this research has been centered on Western music, and little research has been done on Korean traditional music. Therefore, in this paper, we will create a data set of Korean traditional music, create a melody using three algorithms based on the data set, and compare the results. Three models were selected based on the similarity between language and music, LSTM, Music Transformer and Self Attention. Using each of the three models, a melody generator was modeled and trained to generate melodies. As a result of user evaluation, the Self Attention method showed higher preference than the other methods. Data set is very important in AI composition. For this, a Korean traditional music data set was created, and AI composition was attempted with various algorithms, and this is expected to be helpful in future research on AI composition for Korean traditional music.