• Title/Summary/Keyword: 생성형 AI 교육

Search Result 66, Processing Time 0.018 seconds

Automatic scoring of mathematics descriptive assessment using random forest algorithm (랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점)

  • Inyong Choi;Hwa Kyung Kim;In Woo Chung;Min Ho Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.165-186
    • /
    • 2024
  • Despite the growing attention on artificial intelligence-based automated scoring technology as a support method for the introduction of descriptive items in school environments and large-scale assessments, there is a noticeable lack of foundational research in mathematics compared to other subjects. This study developed an automated scoring model for two descriptive items in first-year middle school mathematics using the Random Forest algorithm, evaluated its performance, and explored ways to enhance this performance. The accuracy of the final models for the two items was found to be between 0.95 to 1.00 and 0.73 to 0.89, respectively, which is relatively high compared to automated scoring models in other subjects. We discovered that the strategic selection of the number of evaluation categories, taking into account the amount of data, is crucial for the effective development and performance of automated scoring models. Additionally, text preprocessing by mathematics education experts proved effective in improving both the performance and interpretability of the automated scoring model. Selecting a vectorization method that matches the characteristics of the items and data was identified as one way to enhance model performance. Furthermore, we confirmed that oversampling is a useful method to supplement performance in situations where practical limitations hinder balanced data collection. To enhance educational utility, further research is needed on how to utilize feature importance derived from the Random Forest-based automated scoring model to generate useful information for teaching and learning, such as feedback. This study is significant as foundational research in the field of mathematics descriptive automatic scoring, and there is a need for various subsequent studies through close collaboration between AI experts and math education experts.

An Analysis of Educational Capacity Prediction according to Pre-survey of Satisfaction using Random Forest (랜덤 포레스트를 활용한 만족도 사전조사에 따른 교육 역량 예측 분석)

  • Nam, Kihun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.487-492
    • /
    • 2022
  • Universities are looking for various methods to enhance educational competence level suitable for the rapidly changing social environment. This study suggests a method to promote academic and educational achievements by reducing drop-out rate from their majors through implementation of pre-survey of satisfaction that revised and complemented survey items. To supplement the CQI method implemented after a general satisfaction survey, a pre-survey of satisfaction was carried out. To consolidate students' competences, this study made prediction and analysis of data with more importance possible using the Random Forest of the machine learning technique that can be applied to AI Medici platform, whose design is underway. By pre-processing the pre-survey of satisfaction, the students information enrolled in classes were defined as an explanatory variable, and they were classified, and a model was created and learning was conducted. For the experimental environment, the algorithms and sklearn library related in Jupyter notebook 3.7.7, Python 3.7 were used together. This study carried out a comparative analysis of change in educational satisfaction survey, carried out after classes, and trends in the drop-out students by reflecting the results of the suggested method in the classes.

A Study on the impact of ChatGPT Quality and Satisfaction on Intention to Continuous Use (ChatGPT 품질과 활용만족이 지속적 이용의도에 미치는 영향)

  • Park Cheol Woo;Kang Gyung Lan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.6
    • /
    • pp.191-199
    • /
    • 2023
  • The purpose of this study is to examine the impact of ChatGpt's quality on users' satisfaction and intention to continuous use it. For this purpose, a survey was conducted targeting college students in the Busan and Gyeongnam regions, and responses from a total of 155 people were verified using the SPSS 28.0 program. As a result of the study, reliability and stability among ChatGPT quality factors were found to have a positive effect on satisfaction with use and intention to continuous use. Satisfaction with the use of ChatGPT was found to have a positive effect on intention to continuous use.. Satisfaction with use was found to have a positive mediating effect between the reliability and stability of ChatGPT quality and intention to continous use it. As a result of this study, we aim to contribute to suggesting educational and policy directions necessary to promote the use of ChatGPT by presenting factors that affect users' intention to continuous use ChatGPT among the qualities of ChatGPT.

  • PDF

The Influence of ChatGPT Literacy on Academic Engagement: Focusing on the Serial Mediation Effect of Academic Confidence and Perceived Academic Competence (챗GPT 리터러시가 학업열의에 미치는 영향: 학업자신감과 지각된 학업역량의 이중매개효과를 중심으로)

  • Eunsung Lee;Longzhe Quan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.565-574
    • /
    • 2024
  • ChatGPT is causing significant reverberations across all sectors of our society, and this holds true for the field of education as well. However, scholarly and societal discussions regarding ChatGPT in academic settings have primarily focused on issues such as plagiarism, with relatively limited research on the positive effects of utilizing generative AI. Additionally, amidst the educational crisis of the post-COVID era, there is a growing recognition of the need to enhance academic engagement. In light of these concerns, we investigated how academic engagement varies based on students' levels of ChatGPT literacy and examined whether students' academic confidence and perceived academic competence serve as mediators between ChatGPT literacy and academic engagement. An analysis using SPSS was conducted on the data collected from 406 college students. The results showed that ChatGPT literacy had a positive effect on academic engagement, and academic confidence mediated the relationship between ChatGPT literacy and academic engagement. Also, when the mediating effect of perceived academic competence was significant only when it was serially mediated. Based on these findings, we discussed the theoretical contributions of identifying the theoretical mechanism between ChatGPT literacy and academic engagement. In addition, practical implications regarding the importance of ChatGPT literacy education were described.

Automatic Adaptation Based Metaverse Virtual Human Interaction (자동 적응 기반 메타버스 가상 휴먼 상호작용 기법)

  • Chung, Jin-Ho;Jo, Dongsik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.2
    • /
    • pp.101-106
    • /
    • 2022
  • Recently, virtual human has been widely used in various fields such as education, training, information guide. In addition, it is expected to be applied to services that interact with remote users in metaverse. In this paper, we propose a novel method to make a virtual human' interaction to perceive the user's surroundings. We use the editing authoring tool to apply user's interaction for providing the virtual human's response. The virtual human can recognize users' situations based on fuzzy, present optimal response to users. With our interaction method by context awareness to address our paper, the virtual human can provide interaction suitable for the surrounding environment based on automatic adaptation.

Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit (Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석)

  • Hye-In Na;Byeong-Hee Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT, as a representative chatbot leveraging generative artificial intelligence technology, is used valuable not only in scientific and technological domains but also across diverse sectors such as society, economy, industry, and culture. This study conducts an explorative analysis of user sentiments and needs for ChatGPT by examining global social media discourse on Reddit. We collected 10,796 comments on Reddit from December 2022 to August 2023 and then employed keyword analysis, sentiment analysis, and need-mining-based topic modeling to derive insights. The analysis reveals several key findings. The most frequently mentioned term in ChatGPT-related comments is "time," indicative of users' emphasis on prompt responses, time efficiency, and enhanced productivity. Users express sentiments of trust and anticipation in ChatGPT, yet simultaneously articulate concerns and frustrations regarding its societal impact, including fears and anger. In addition, the topic modeling analysis identifies 14 topics, shedding light on potential user needs. Notably, users exhibit a keen interest in the educational applications of ChatGPT and its societal implications. Moreover, our investigation uncovers various user-driven topics related to ChatGPT, encompassing language models, jobs, information retrieval, healthcare applications, services, gaming, regulations, energy, and ethical concerns. In conclusion, this analysis provides insights into user perspectives, emphasizing the significance of understanding and addressing user needs. The identified application directions offer valuable guidance for enhancing existing products and services or planning the development of new service platforms.