• Title/Summary/Keyword: 상호작용 비선형성

Search Result 196, Processing Time 0.027 seconds

Ultimate Strength Interaction of Steel/Concrete Composite Trapezoidal Box Girders Subjected to Concurrent Action of Bending and Torsion (휨과 비틀림을 동시에 받는 강/콘크리트 합성 제형 박스거더의 극한강도 상호작용)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.465-475
    • /
    • 2010
  • In the horizontally curved bridges, girders are subjected to the combined action of vertical bending and torsion due to their curvatures without any eccentric loads. As subjected to bending and torsion, the ultimate strength of steel/concrete composite box girders are limited by the diagonal tensile stress in the deck concrete induced by the St. Venant torsion. To determine the ultimate strength of composite box girders in bending and torsion and their interactions, this study conducted a 3-dimensional FEA and classical strength of materials investigation. Using ABAQUS, the FEA fully utilized advanced nonlinear analysis techniques simulating material/geometrical nonlinearity and post-cracking behaviors. The ultimate strength from numerical data were compared with theoretically derived values. Concurrent compressive stresses in the concrete deck improve the shear-resisting capacity of concrete, thereby resulting in an increased torsional resistance of the composite box girder in positive bending. The proposed interaction equation is very simple yet it provides a rational lower bound in determining the ultimate strength of concrete/steel composite box girders.

Numerical Analysis of Wave-Current Interaction Phenomenon Using the Spectral Element Method (스펙트랄요소법(SEM)을 이용한 파랑-조류 상호작용 현상 수치해석 연구)

  • Sung, Hong-Gun;Hong, Key-Yong;Kyung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.181-186
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. The present model of the fluid motion is based on the Navier-Stokes equations incorporating velocity-pressure formulation because of need to model the nonlinear wave interaction with spatially non-uniform current field. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. As an intermediate stage of development, solution procedure and characteristics aspects of the present modeling and numerical method are addressed in detail, and preliminary numerical results prove its accuracy and convergence.

  • PDF

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

비선형상호작용이 파랑스펙트럼의 발달에 미치는 영향

  • 오병철;이길성
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1998.09a
    • /
    • pp.106-116
    • /
    • 1998
  • Hasselmann(1963b)은 Neumann 스펙트럼에 대한 비선형에너지 전달함수의 수치계산을 처음으로 행하였다. 그 후 Sell and Hassetmann(1972)은 동일한 계산법을 JONSWAP 스펙트럼에 적용하여 비선형에너지 전달에 의하여 스펙트럼의 첨두가 저주파 영역으로 천이하는 현상을 발견하였다. 그러나 이 계산법은 방대한 시간을 필요로 하며 또한 수치적인 불안정성 때문에 계산 정도가 떨어지는 단점을 갖고 있다. (중략)

  • PDF

Selective Interactivity and Reflexive Intermediality: Focusing on the Neflix Film (선택의 상호작용성과 성찰의 상호미디어성: <블랙미러: 밴더스내치>를 중심으로)

  • Kim, Mookyu
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.60-68
    • /
    • 2021
  • The purpose of this paper is to examine the formal characteristics of , which has been screened on Netflix since 2018. This film can be considered an interactive narrative because it gives viewers the opportunity to select their own narrative forks which lead to various endings. However, it also limits viewers' freedom of interactions in many ways, resulting in the pessimistic narrative world of series. In this contradictory situation, the conflict between the user's selectability and the narrator's authoriality emerges. And this collision gives rise to a complex form in which nonlinear interactive and linear narrative forms blend together. It can be understood as a form of self-reflection, such as forms of the metalepsis and breaking the fourth wall. In this paper, this particular form will be regarded as a sort of reflexive intermediality, i. e. the form for media reflexion.

Nonlinear Sound Amplification and Directivity Due to Underwater Bubbles (수중 기포에 의한 비선형 음파의 증폭과 지향성)

  • 김병남;최복경;윤석왕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.250-260
    • /
    • 2003
  • Since a bubble in water is a highly nonlinear acoustic scatterer, the acoustic scattered waves from underwater bubbles show highly nonlinear acoustic properties. These acoustic scattered waves can be observed at the second or higher harmonics as well as at the fundamental primary frequency of incident acoustic wave. When two primary acoustic waves of different frequencies are incident on a bubble, the acoustic scattered waves can be also observed at the sum and the difference frequencies of the primary waves. In this study, when the two primary acoustic waves were incident on a bubble screen in water, we observed that the amplitude of difference frequency wave was amplified by the bubble nonlinearity and its directivity was oriented in the propagation directions of primary waves. The directivity of scattered difference frequency wave was analyzed as a coherent scattering for virtual source by using the directivity of the primary acoustic wave.

Inelastic Response Spectra Due to the Weak Earthquakes Considering the Nonlinear Soft Soil Layer (비선형 연약지반을 고려한 약진에 의한 비탄성 응답스펙트럼)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.15-22
    • /
    • 2003
  • Seismic design codes developed taking into account the strong earthquakes may result in unnecessary economical loss in the low seismic area, and the importance of the performance based design considering the soil-structure interaction is recognized for the reasonable seismic design. In this study. elastic and inelastic seismic response analyses of a single degree of freedom system on the soft soil layer were performed considering the nonlinearity of the soil for the 1 weak earthquakes scaled to the nominal peak accelerations of 0.07g and 0.11g. The seismic response analyses were performed in one step applying the earthquake motions to the bedrock, utilizing a pseudo 3-D dynamic analysis software of the soil-structure system. The study results indicated that seismic response spectra of a system assuming the rigid base or the linear soil layer does not represent the true behavior of a structure-soil system, and it is necessary to take into account the nonlinear soil-structure interaction effects and to perform the performance based seismic design for the various soil layers, having different characteristics, rather than to follow the routine design procedures specified in the design codes for the reasonable seismic design. The nonlinearity of the soft soil excited with the weak seismic motions also affected significantly on the elastic and inelastic seismic response spectra of a system due to the nonlinear soil amplification of the earthquake motions, and it was pronounced especially for the elastic response spectra.

Transient Surge Motion of A Turret Moored Body in Random Waves (불규칙파 중에 Turret 계류된 부유체의 천이운동해석)

  • 김동준
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 1991
  • A moored body in the sea is subjected to second-order wave forces as well as to linear oscillatory ones. The second-order farces contain slowly-varying components, of which the characteristic frequency can be as low as the natural frequency of horizontal motions of the moored body. As a consequence, the slowly-varying force can excite unexpectedly large horizontal excursion of the body, which may cause a serious damage on the mooring system. In design analysis of Turret-type mooring system which is one of the interesting mooring systems for a floating body. the slowly-varying drift forces and the transient motion of the system during weathervaning are very important. In this paper the slowly-varying drift forces were calculated by using the Quadratic Transfer Function with considering the second order free-wave contributions. Additionaly the transient surge motion of the moored body was simulated with including the roll of the time-memory effect. In this simulation the spring constant of the spread Turret mooring system is updated at every time step for considering the nonlinear effect.

  • PDF

Stability Analysis for CWR on the Railway Bridges by Linearized Method (선형해석법을 이용한 교량상 장대레일의 안정성 해석 방법 연구)

  • Choi, Young-Gil;Oh, Ju-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.472-480
    • /
    • 2009
  • The stability analysis for CWR is difficult in the theory itself because both geometric and material nonlinearity should be considered. Also the analysis results are varied according to the loading history. In contrast to the complexity in the theory, the analysis results for CWR on the railway bridges are quite simple and can be predicted because of a small buckling effect and its negligible nonlinearity. In this study, refined nonlinear analysis methods for the stability analysis of CWR on the railway bridges were developed which consider only material nonlinearity beeause the effects of geometric nonlinearity are nominal. In this study, the analysis results can be found within limited number of iterations with idealized linear force-displacement relationship. From the analysis result comparisons, it was found that the stability analysis for CWR on the railway bridges can be performed effectively by this method.

Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation (쓰나미-식생 비선형 상호작용의 동적해석을 위한 3차원 수치파동수조의 적용)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.831-838
    • /
    • 2016
  • The disaster preventing system using vegetation has been growing in the field of coastal engineering in recent years. To analyze wave and flow fields under nonlinear interactions between tsunami and vegetation, the purpose of this study is to evaluate newly-developed 3-D numerical wave tank including energy dissipation by tsunami-vegetation interaction based on existing N-S solver with porous body model. Comparing numerical results using mean drag coefficient and dynamic drag coefficient due to Reynolds number to existing experimental results it is revealed that computed results considering the dynamic drag coefficient are in good agreement with the laboratory test results for time-domain waveform. In addition, the calculated transmission coefficients of solitary waves in various vegetation densities and incident wave heights are also in good agreement with the experimental values. This confirms the validity and effectiveness of the developed 3-D numerical wave tank with the fluid resistance by vegetation.