Ultimate Strength Interaction of Steel/Concrete Composite Trapezoidal Box Girders Subjected to Concurrent Action of Bending and Torsion

휨과 비틀림을 동시에 받는 강/콘크리트 합성 제형 박스거더의 극한강도 상호작용

  • 김경식 (청주대학교 토목환경공학과)
  • Received : 2010.07.16
  • Accepted : 2010.10.05
  • Published : 2010.10.27

Abstract

In the horizontally curved bridges, girders are subjected to the combined action of vertical bending and torsion due to their curvatures without any eccentric loads. As subjected to bending and torsion, the ultimate strength of steel/concrete composite box girders are limited by the diagonal tensile stress in the deck concrete induced by the St. Venant torsion. To determine the ultimate strength of composite box girders in bending and torsion and their interactions, this study conducted a 3-dimensional FEA and classical strength of materials investigation. Using ABAQUS, the FEA fully utilized advanced nonlinear analysis techniques simulating material/geometrical nonlinearity and post-cracking behaviors. The ultimate strength from numerical data were compared with theoretically derived values. Concurrent compressive stresses in the concrete deck improve the shear-resisting capacity of concrete, thereby resulting in an increased torsional resistance of the composite box girder in positive bending. The proposed interaction equation is very simple yet it provides a rational lower bound in determining the ultimate strength of concrete/steel composite box girders.

곡선교량시스템에서 거더는 편심하중이 없어도 교량이 가지는 곡률 자체로 인하여 휨 및 비틀림 거동을 하게 된다. 휨과 비틀림을 동시에 받는 강/콘크리트 합성 박스거더는 St. Venant 비틀림에 의해 콘크리트 바닥판에 발생하는 사인장 응력에 의해 그 극한강도가 제한된다. 합성 박스거더의 극한강도를 얻기 위하여 유한요소해석 패키지 프로그램 ABAQUS을 이용하여 재료 및 기하 비선형성뿐 아니라 콘크리트 균열후 거동 등이 고려된 비선형해석을 수행하였다. 또한 구조해석 이론에 근거한 해석적 방법론으로 합성 박스거더의 휨과 비틀림에 대한 극한강도 상호 작용이 고려된 수식을 유도하여 수치해석 결과와 비교하였다. 휨 거동에 의해 정모멘트 구간 박스거더 상부에 발생하는 종방향 압축응력은 바닥판 콘크리트의 전단강도를 일정부분 향상시켜 결과적으로 전체 박스거더의 비틀림강도가 향상되는 효과가 확인되었다. 유한요소해석 및 구조해석 이론 전개의 결과에 근거하여 강합성 박스거더의 극한강도 상호작용을 예측하는 간편한 형태의 수식이 제안되었다.

Keywords

References

  1. 김경식, 박종헌, 이윤수(2006) 강/콘크리트 합성 제형 박스 거더의 극한강도 상호작용 효과, 2006년도 대한토목학회학술발표대회 발표논문집, 대한토목학회, pp.698-701.
  2. 류형근, 윤석구, 배두병, 장승필(2005) 조밀단면을 갖는 부분합성보의 극한강도 평가, 대한토목학회 논문집, 대한토목학회, 제25권 제5A호, pp.889-897.
  3. AASHTO (2004) AASHTO LRFD bridge design specifications, American Association of State Highway and Transportation Official, Washington, DC.
  4. ABAQUS Inc. (2005) ABAQUS Analysis user's manual, Pawtucket, RI.
  5. Baskar, K. and Shanmugan, N.E. (2003) Steel - concrete composite plate girders subject to combined shear and bending, Journal of Constructional Steel Research, Vol. 59, No. 4, pp.531-557. https://doi.org/10.1016/S0143-974X(02)00042-1
  6. Cosenza, E. (1990) Finite element analysis of reinforced concrete elements in a cracked state, Computers & Structures, Vol. 36, No. 1, pp.71-79. https://doi.org/10.1016/0045-7949(90)90176-3
  7. Crisfield, M.A. (1981) A fast incremental/iteration solution procedure that handles snap-through buckling, Computers and Structures, Vol. 13, No. 1-3, pp.55-62. https://doi.org/10.1016/0045-7949(81)90108-5
  8. Foster, S.J., Budiono, B. and Gilbert, R.I. (1996) Rotating crack finite element model for reinforced concrete structures, Computers & Structures, Vol. 58, No. 1, pp.43-50. https://doi.org/10.1016/0045-7949(95)00109-T
  9. Frantzeskakis, C. and Theillout, J.N. (1989) Nonlinear finite element analysis of reinforced concrete structures with a particular strategy following the cracking process, Computers & Structures, Vol. 31, No. 3, pp.395-412. https://doi.org/10.1016/0045-7949(89)90387-8
  10. Gilbert, R.I. and Warner, R.F. (1978) Tension stiffening in reinforced concrete slabs, Journal of the Structural Division, ASCE, Vol. 104, No. ST12, pp.1885-1900.
  11. Hadidi, R. and Saadeghvaziri, M.A. (2005) Transverse cracking of concrete bridge decks: state-of-the-art, Journal of Bridge Engineering, ASCE, Vol. 10, No. 5, pp.503-510. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:5(503)
  12. Hand, F.D., Pecknold, D.A. and Schnobrich, W.C. (1973) Nonlinear analysis of reinforced concrete plates and shells, Journal of the Structural Division, ASCE, Vol. 99, No. ST7, pp.1491-1505.
  13. Jofriet, J.C. and McNeice, G.M. (1971) Finite-element analysis of reinforced concrete slabs, Journal of Structural Division, ASCE, Vol. 97, No. ST3, pp. 785-806.
  14. Kim, K. and Yoo, C.H. (2006) Ultimate strength interaction of bending and torsion of steel/concrete composite box girders in positive bending, Advances in Structural Engineering, Vol. 9, No. 5, pp.707-718. https://doi.org/10.1260/136943306778827529
  15. Kim, K. and Yoo, C.H. (2008) Ultimate strengths of steel rectangular box beams subjected to combined action of bending and torsion, Engineering Structures, Vol. 30, No. 6, pp.1677-1687. https://doi.org/10.1016/j.engstruct.2007.11.011
  16. Kotsovos, M.D. and Spiliopoulos, K.V. (1998) Modelling of crack closure for finite-element analysis of structural concrete, Computers & Structures, Vol. 69, No. 3, pp.383-398. https://doi.org/10.1016/S0045-7949(98)00107-2
  17. Lin, C.S. and Scordelis, A.C. (1975) Nonlinear analysis of reinforced concrete shells of general form, Journal of the Structural Division, ASCE, VOl. 101, No. ST3, pp.523-238.
  18. MacGregor, J.G. (1997), Reinforced concrete: Mechanics and design. 3rd edition, Prentice Hall, Upper Saddle River, NJ.
  19. Pi, Y. and Bradford, M.A. (2001) Strength design of steel I-section beams curved in plan, Journal of Structural Engineering, ASCE, Vol. 127, No. ST6, pp. 639-646. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(639)
  20. Riks, E. (1979) An incremental approach to the solution of snapping and buckling problems, International Journal of Solids and Structures, Vol. 15, No. 7-B, pp.529-551. https://doi.org/10.1016/0020-7683(79)90081-7
  21. Spacone, E. and El-Tawil, S. (2004) Nonlinear analysis of steel-concrete composite structures: state of the art, Journal of Structural Engineering, ASCE, Vol. 130, No. 2, pp.159-168. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(159)
  22. Thevendran, V., Chen, S., Shanmugam, N.E. and Liew, J.Y.(1999) Nonlinear analysis of steel-concrete composite beams curved in plan, Finite Elements in Analysis and Design, Vol. 32, No. 3, pp.125-139. https://doi.org/10.1016/S0168-874X(99)00010-4
  23. Unger, J.F., Eckardt, S. and Könke, C. (2007) Modelling of cohesive crack growth in concrete structures with the extended finite element method, Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 41-44, pp.4087-4100. https://doi.org/10.1016/j.cma.2007.03.023
  24. Wang, T. and Hsu, T.C. (2001) Nonlinear finite element analysis of concrete structures using new constitutive models, Computers & Structures, Vol. 79, No. 32, pp. 2781-2791. https://doi.org/10.1016/S0045-7949(01)00157-2
  25. Yamamoto, T. and Vecchio F.J. (2001) Analysis of reinforced concrete shells for transverse shear and torsion, ACI Structural Journal, Vol. 98, No. 2, pp. 191-200.
  26. Yang, Z.J. and Chen, J. (2005) Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams, Engineering Fracture Mechanics, Vol. 72, No. 14, pp.2280-2297. https://doi.org/10.1016/j.engfracmech.2005.02.004
  27. Zhang, Y.X., Bradford, M.A. and Gilbert, R.I. (2007) A layered shear-flexural plate/shell element using Timoshenko beam functions for nonlinear analysis of reinforced concrete plates, Finite Elements in Analysis and Design, Vol. 43, No. 11-12, pp.888-900. https://doi.org/10.1016/j.finel.2007.05.002