• Title/Summary/Keyword: 상세반응기구

Search Result 21, Processing Time 0.024 seconds

Modeling of Laminar Burning Velocities for Hydrocarbon and 7ethanol Fuels by Using Detailed Chemical Reaction Mechanisms (상세화학반응기구를 이용한 탄화 수소 및 메탄을 층류 화염 속도 모델링)

  • Bae, Sang-Su;Min, Gyeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1303-1310
    • /
    • 2001
  • In order to be applicable to the combustion modelling of stratified charged combustion like that of - lean burn and GDI engine, the correlations of laminar burring velocities fur several hydrocarbon fuels and methanol are needed over a wide range of equivalence ratio, pressure and temperature. In this study, these correlations are modeled in the 1311owing form based on the experimental and Muller\`s modeling results for several fuels, where $\alpha$, ξ, and ξ are functions of pressure and temperature, $S_{L}$ =$\alpha$ exp[-ξ($\Phi$-$\Phi$$_{m}$)$^{2}$ -exp {-ζ($\Phi$-$\Phi$$_{m}$)}-ζ($\Phi$-$\Phi$$_{m}$)]. By using the results calculated by PREMIX code with Sloane\`s detailed chemical reaction mechanism for propane, it is verified that the coefficients of the abode modeling can be determined by considering laminar burning velocity data only in a range of equivalence ratio less than $\Phi$$_{m}$. Therefore, Muller\`s modeling results can be adopted leer modeling of the pressure and temperature dependency. Compared with the results of the existing Keck'and Gulder's models, those of the present one showed the good agreement of the recent experimental data, especially in the range of lean and rich sides.s.des.s.

A Study on the Burning Velocity Correlation of LFG Mixed Fuel Using Numerical Analysis (수치계산을 이용한 LFG 혼합연료의 연소속도 상관식에 관한 연구)

  • Lee, Chang-Eon;O, Chang-Bo;Jeong, Ik-San
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1513-1522
    • /
    • 2000
  • In this study, the burning velocities of LFG and LFG mixed fuels have been numerically determined. C3 reaction mechanism involving 92 species and 621 reactions was adopted in the calculation. The computed burning velocities using C3 mechanism show good agreements with experimental data. Based on numerical results, the maximum burning velocities of LFG and LFG mixed fuels were correlated as a function of CH$_4$ and LFG component percentage at stoichiometric conditions. In addition, the correlations of burning velocities of LFG and LFG mixed fuels were obtained over a wide range of the equivalence ratio. The numerical results are well agreed with the burning velocity correlations. The burning velocity correlations for LFG and LFG mixed fuels suggested in this study can be applied to the practical utilization of LFG.

Detonation Wave Propagation Through a T-type Branch Tube in Combustion Wave Rocket Igniter (연소파 로켓 점화기의 T형 분기관내 데토네이션파 전파)

  • ;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.221-224
    • /
    • 2003
  • A numerical study is carried out for the detonation wave propagation through a T-branch. The T-branch is a crucial part of the combustion wave igniter, a novel concept of rocket ignition system aimed for the simultaneous ignition of multiple combustion chambers by delivering detonation waves. Euler equation and induction parameter equation are used as governing equations with a reaction term modeled from the chemical kinetics database obtained from a detailed chemistry mechanism. Second-order accurate implicit time integration and third-order space accurate TVD algorithm were used for solution of the coupled equations. Over two-million grid points enabled the capture of the dynamics of the detonation wave propagation including the degeneration and re-initiation phenomena, and some of the design factors were be obtained for the CWI flame tubes.

  • PDF

A Numerical Study of Combustion Characteristics for HCCI Engine with Detailed Diesel Surrogate Chemical Mechanism (Diesel Surrogate 상세 반응 기구를 이용한 HCCI 엔진의 연소 특성에 관한 수치해석 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.9-15
    • /
    • 2011
  • Homogeneous charge compression ignition(HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, combustion characteristics of HCCI engine with suggested diesel surrogate(heptane/toluene mixture fuel) reaction mechanism were numerically investigated by heptane/toluene mixture ratio and EGR ratio. As results, the ignition timing became faster with increasing of heptane, and an initial oxidation and the ignition timing of the mixture fuel were affected by heptane and toluene, respectively.

Skeletal Chemical Mechanisms for a Diesel Fuel Surrogate by the Directed Relation Graph(DRG) (직접 관계 그래프(DRG)를 이용한 디젤 연료의 상세 화학 반응 기구 축소화)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2011
  • It is a challenging task to apply large detailed chemical mechanisms of fuel oxidation in simulation of complex combustion phenomena. There exist a few systematic methodologies to reduce detailed chemical mechanisms to smaller sizes involving less computational load. This research work concerns generation of a skeletal chemical mechanism by a directed relation graph with specified accuracy requirement. Two sequential stages for mechanism reduction are followed in a perfectly stirred reactor(PSR) for high temperature chemistry and to consider the autoignition delay time for low and high temperature chemistry. Reduction was performed for the detailed chemical mechanism of n-heptane consisting of 561 species and 2539 elementary reaction steps. Validation results show acceptable agreement for the autoignition delay time and the PSR calculation in wide parametric ranges of pressure, temperature and equivalence ratio.

Laminar Burning Velocities of Propane and Iso-Octane Fuels for Stratified Charged Combustion Modeling (성층화 혼합기 연소 모델링을 위한 프로판 및 이소옥탄 연료의 층류 화염 속도)

  • Pae, Sang-Soo;Kim, Yong-Tae;Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.704-709
    • /
    • 2000
  • Laminar burning velocities of propane- and iso-octane-air mixtures have been numerically modelled over a wide range of equivalence ratio, pressure and temperature. These correlations are applicable to the modelling of stratified charged combustion like that of lean bum and GDI engine combustion. The numerical models are based on the results calculated by PREMIX code with Sloane's detailed chemical reaction mechanism for propane and FlameMaster code with Peters' for iso-octane. Laminar burning velocity for two fuels showed a pressure and temperature dependence in the following form, in the range of $0.1{\sim}4MPa$, and $300{\sim}1000K$, respectively. $S_L={\alpha}\;{\exp}[-\xi({\phi}-{\phi}_m)^2-{\exp}\{-{\xi}({\phi}-{\phi}_m)\}-{\xi}({\phi}-{\phi}_m)]$ where ${\phi}_m=1.07$, and both of ${\alpha}$ and ${\xi}$ are functions of pressure and temperature. Compared with the results of the existing models, those of the present one showed the good agreement of the recent experiment data, especially in the range of lean and rich sides. Judging from the calculated results of the stratified charged combustion by using STAR-CD, the above modelling prove to be more suitable than the other ones.

  • PDF

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

A Study on Emission Characteristics of Inserting CO Tube (CO튜브 삽입에 따른 오염 물질 배출특성에 관한 연구)

  • Lee, Jae-Park;Kim, Jong-Min;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.182-187
    • /
    • 2010
  • This study was the effect of inserting CO tube on $NO_x$ and CO emission characteristics in a compact combustion chamber. In detail, $NO_x$ and CO emission characteristics with changing of distance due to inserting CO tube between a burner and a main heat exchanger were investigated. For this study, the commercial program, FLUENT with GRI 2.11 detail reaction mechanism, was used for the numerical study and a commercial heat exchanger was tested for the experimental study. As results, when the CO tube was inserted between a burner and a main heat exchanger, it was verified that $NO_x$ and CO emissions was decreased simultaneously as CO tube was closed to a burner and the distance between CO tube and a main heat exchanger was increased.

Effect of the CO Tube insert for Emission Characteristics in a Compact Combustion Chamber (컴팩트 연소실 내 CO튜브 삽입에 따른 오염물질 배출특성)

  • Lee, Jae-Park;Kim, Jong-Min;Lee, Seung-Ro;Jang, Gi-Hyun;Lee, Chang-Eon
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.66-71
    • /
    • 2010
  • This study was the effect of CO tube insert for NOx and CO emission characteristics in a compact combustion chamber. In detail, NOx and CO emission characteristics with changing of distance due to inserting the CO tube between the burner and the main heat exchanger were investigated. For this study, the commercial program, FLUENT, and the GRI 2.11 detail reaction mechanism were used for the numerical study and a simple model heat exchanger was tested for the experimental study. As results, when the CO tube was inserted between the burner and the main heat exchanger, it was verified the simultaneous NOx and CO reduction method because of increasing the residence time and decreasing the flame temperature.

  • PDF

Radiation Effects on the Ignition and Flame Extinction of High-temperature Fuel (고온연료의 점화 및 화염 소화특성에 미치는 복사효과)

  • Kim, Yu Jeong;Oh, Chang Bo;Choi, Byung Il;Han, Yong Shik
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.50-56
    • /
    • 2013
  • The radiation effects on the auto-ignition and extinction characteristics of a non-premixed fuel-air counterflow field were numerically investigated. A detailed reaction mechanism of GRI-v3.0 was used for the calculation of chemical reactions and the optically-thin radiation model was adopted in the simulations. The flame-controlling continuation method was also used in the simulation to predict the auto-ignition point and extinction limits precisely. As a result, it was found that the maximum H radical concentration, $(Y_H)_{max}$, rather than the maximum temperature was suitable to understand the ignition and extinction behaviors. S-, C- and O-curves, which were well known from the previous theory, were identified by investigating the $(Y_H)_{max}$. The radiative heat loss fraction ($f_r$) and spatially-integrated heat release rate (IHRR) were introduced to grasp each extinction mechanism. It was also found that the $f_r$ was the highest at the radiative extinction limit. At the flame stretch extinction limit, the flame was extinguished due to the conductive heat loss which attributed to the high strain rate although the heat release rate was the highest. The radiation affected on the radiative extinction limit and auto-ignition point considerably, however the effect on the flame stretch extinction limit was negligible. A stable flame regime defined by the region between each extinction limit became wide with increasing the fuel temperature.