References
- T. Turanyi, "Reduction of large reaction mechanisms", New J. Chem., Vol. 14, 1990, pp. 795-803
- A.S. Tomlin, M.J. Pilling, T. Turanyi, J.H. Merkin and J. Brindley, "Mecahanism reduction for the oscillatory oxidation of hydrogen: Sensitivity and quasi-steady-sate analyses", Combust. Flame, Vol. 91, 1992, pp. 107-130 https://doi.org/10.1016/0010-2180(92)90094-6
- H. Wang and M. Frenklach, "Detailed reduction of reaction mechanisms for flame modeling", Com bust. Flame, Vol. 87, 1991, pp. 365-370 https://doi.org/10.1016/0010-2180(91)90120-Z
- T.F. Lu, Y. Ju and C.K. Law, "A directed relation graph method for mechanism reduction", Proc. Combust. Inst., Vol. 2005, 30, pp. 1333-1341 https://doi.org/10.1016/j.proci.2004.08.145
- T.F. Lu, Y. Ju and C.K. Law, "Linear time reduction of large kinetic mechanism with directed realtion graph: n-Heptane and iso-octane", Combust. Flame, Vol. 144, 2006, pp. 24-36 https://doi.org/10.1016/j.combustflame.2005.02.015
- T.F. Lu, Y. Ju and C.K. Law, "Strategies for mechanism reduction for large hydrocarbons: n-heptane", Combust. Flame, Vol. 154, 2008, pp. 153-163 https://doi.org/10.1016/j.combustflame.2007.11.013
- N. Peters, "Numerical Simulation of Combustion Phenomena", Lecture Notes in Physics. Springer, Berlin, Vol. 241, 1985, pp. 90-109
- N. Peters and R.J. Kee, "The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism", Combust. Flame, Vol. 68, 1987, pp. 17-29 https://doi.org/10.1016/0010-2180(87)90062-9
- J.Y. Chen, "A general procedure for constructing reduced reaction mechanisms with given independent relations", Combust. Sci. Technol., Vol. 57, 1988, pp. 89-94 https://doi.org/10.1080/00102208808923945
- M.D. Smooke, "Reduced kinetic mechanisms and asymptotic approximations for methan-air flames", Lecture Notes in Physics, Springer-Verlag, Berlin, Vol. 384, 1991, pp. 1-28
- Y. Ju and T. Niioka, "Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer", Combust. Flame, Vol. 99, 1994, pp. 240-246 https://doi.org/10.1016/0010-2180(94)90127-9
- C.J. Sung, C.K. Law and J.Y. Chen, "An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation", Proc. Combust. Inst., Vol. 27, 1998, pp. 295-304 https://doi.org/10.1016/S0082-0784(98)80416-5
- A. Massias, D. Diamantis, E. Mastorakos and D. A. Goussis, "An algorithm for the construction of global reduced mechanisms with CSP data", Combust. Flame, Vol. 117, 1999, pp. 685-708 https://doi.org/10.1016/S0010-2180(98)00132-1
- A. Massias, D. Diamantis, E. Mastorakos and D. A. Goussis, "Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data", Combust. Theory Modelling, Vol. 3, 1999, pp. 233-257 https://doi.org/10.1088/1364-7830/3/2/002
- T.F. Lu, Y. Ju and C.K. Law, "Complex CSP for chemistry reduction and analysis", Combust. Flame, Vol. 126, 2001, pp. 1445-1455 https://doi.org/10.1016/S0010-2180(01)00252-8
- U. Maas and S.B. Pope, "Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space", Combust. Flame, Vol. 88, 1992, pp. 239-264 https://doi.org/10.1016/0010-2180(92)90034-M
- https://www-pls.llnl.gov/?url=science_and_technology- chemistry-combustion
- K. E. Niemeyer, "Skeletal mechanism generation for surrogate fuels", Master Thesis, Case western Reserve University, 2010
- R. J. Kee, F. M. Rupley and J. A. Miller, "Chemkin- II: A FORTRAN chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics", SAND89-8009, 1989