• Title/Summary/Keyword: 상공망

Search Result 11, Processing Time 0.02 seconds

Packet data analyzing system for quality assurance of satellite network (위성망 품질보증을 위한 패킷 데이터 분석 시스템)

  • Yu Kang-Hi;Kim Jae-Kwon;Kong Kyung-Tae;Shin Dong-Houn;Lee Sang-Yun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.298-301
    • /
    • 2004
  • KT는 무궁화 3호 위성을 이용한 양방향 위성 통신 사업을 추진하고 있으며, 지상망을 이용하기 어려운 지역에 정부/공공, 에너지 산업, 기업 단일망 등 다양한 산업 분야를 대상으로 초고속 네트워크를 제공하고 있다. 양방향 위성 통신 서비스는 36,000km 상공의 위성 중계기와 지상 간의 통신 지연을 극복하기 위한 첨단 기술로 운용되고 있으며, 중요 데이터에 대한 위성 통신 품질보증 기능을 제공한다. 본 논문에서는 위성망의 트래픽을 수집하고 데이터를 로깅하는 위성망 트래픽 수집 도구와 수집된 데이터를 마이닝을 통해 실시간 모니터링하고 통계 정보를 생성하는 위성망 패킷 데이터 분석 도구로 이루어진 위성망 패킷 데이터 분석 시스템에 대해 논한다. 위성망 패킷 데이터 분석 시스템은 데이터 송수신 정보를 모니터링 함으로써 실시간 위성 통신 상태를 점검하고, 전송 지연 및 실패 등의 위성 통신 오류 상태를 조기 진단하고 조치할 수 있는 위성망 품질 보증 서비스를 제공한다.

  • PDF

Studies of Vertical Distribution Characteristics of Ozone in Pohang Area (오존의 수직분포 특성에 대한 연구 : 포항지역을 중심으로)

  • 김지영;윤용훈;송기범;김기현
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.377-378
    • /
    • 2000
  • 1957년 국제지구물리관측년 (IGY:International Geophysical Year) 계획 이래 대기중의 오존전량(total ozone)과 대기중의 수직 층별 오존량의 측정을 위해 본격적으로 전세계적 오존관측망이 운영되기 시작하였다. 이 시점을 기준으로 오존에 관한 연구는 전지구적인 오존전량의 감소경향과 남극상공 성층권에서의 오존량 파괴에 집중되어왔다. 그러나 대기중 오존의 행태를 더 정확하게 이해하고, 각각의 대기권이 서로의 오존량에 미치는 영향을 이해하기 위해서는 대기중 오존의 수직분포에 관한 연구가 대단히 중요하다. (중략)

  • PDF

DEVELOPMENT OF IONOSPHERIC TOMOGRAPHY MODEL USING GPS (GPS를 이용한 전리층 토모그래피 모델 개발)

  • Choi Byung-Kyu;Park Jong-Uk;Lee Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.237-244
    • /
    • 2006
  • We produced the electron density distribution in the ionosphere over South Korea using the data from nine permanent GPS (Global Positioning System) stations which have been operated by KASI (Korea Astronomy and Space Science Institute). The dual-frequency GPS receiver data was used to precisely estimate the electron density in the ionosphere and we obtained the precise electron density profile based on two-dimensional TEC (Total Electron Contents). We applied ART (Algebraic Reconstruction Technique), which is one of the most commonly used algorithms to develop the tomography model. This paper presented the electron density distribution over South Korea with time. We compared with the electron density profiles derived from the GPS tomography reconstruction, Ionosonde measurement data obtained by observations, and the IRI-2001 values. As a result, the electron density profile by GPS reconstruction was in excellent agreement with the electron density profile obtained by Ionosonde measurement data.

Process of Digital Elevation Model Using RC Helicopter Surveying System (무선조정 헬리콥터 사진측량시스템을 이용한 수치표고모형 작성)

  • Jang, Ho-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.111-116
    • /
    • 2008
  • The study installed non metric camera which was a 10 Mega Pixel camera in RC Helicopter. And the study controlled images hotographed in air on land, considering their overlap. The study could express DEM by abstracting TIN from the acquired images through image registration. Also, the study compared and examined accuracy between reference point and check point observed by Total Station which was a conventional type of survey. As the results, the study could get errors of $-0.194{\sim}0.224\;m$ on X axis, $-0.088{\sim}0.180\;m$ on Y axis and $-0.286{\sim}0.285\;m$ on Z axis. Expressing an error's RMSE in the checkpoint, the study could get of 0.021388 m on X axis, 0.015285 m on Y axis and 0.041872 m on Z axis. It is judged that the above photographing and analyzing technique are better than the existing Total Station to acquire more terrain elevation data.

Construction of the Airborne Gravity Based Geoid and its Evaluation (항공중력기반 지오이드 모델 구축 및 검증)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.159-167
    • /
    • 2009
  • To obtain the gravity data with consistent quality and good distribution over Korea, to overcome the difficulties in constructing precision geoid from biased distribution of ground data, to resolve the discrepancy between the ground and ocean gravity data, an airborne gravity survey was conducted from Dec. 2008 to Jan. 2009. The data was measured at the average flying height of 3,000m and the data with cross-over error of 2.21mGal is obtained. The geoid constructed using this airborne gravity data shows the range of 9.34 $\sim$ 33.88m. Comparing the geoid with respect to the GPS/levelling data, a precision of 0.145m is obtained. After fitting, the degree of fit to GPS/levelling data was calculated about 5cm. It was found that there exists large biases in the area of south-western and northern part of the peninsular which is considered to be the effect of distorted vertical datum in Korea. Thus, more investigation on vertical datum would be needed in near future.

Construction of Ionospheric TEC Retrieval System Using Korean GNSS Network (국내 GNSS 관측 자료를 이용한 전리권 총전자밀도 산출 시스템 구축)

  • Lee, Jeong-Deok;Shin, Daeyun;Kim, Dohyeong;Oh, Seung Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.30-34
    • /
    • 2012
  • National Meteorological Satellite Center(NMSC) of Korea Meteorological Administration(KMA) has launched to implement the application development to get prepared for the space weather operation since 2010. As a action of KMA's space weather work, NMSC constructed Global Navigation Satellite System(GNSS) application system for meteorology and space weather. We will introduce NMSC's space weather application system which derives regional TEC(Total Electron Content) in near real time using nation-wide GNSS network data. First, We constructed system for collecting GNSS data, which is currently collecting about 80 stations operated by agencies like NGII(National Geographic Information Institute), Central Office of DGPS(Differential GPS), and KASI(Korea Astronomy and Space Science) including KMA's own data of 2 stations. In order to retreive regional TEC over Korean peninsular, we build up the automatic processes running every 1-hour. In these processes, firstly, GNSS data of every stations with 24 hours time window are processed to derive DCBs(Differential Code Biases) of each GNSS station and TEC values on every ionosphere piercing point(IPP). Then we made gridded regional TEC map with resolution of 0.25 degree from 31N, 121E to 41N, 135E by combination of all station results within 30 minutes window with assumption that TEC of a given point during a given 30 minutes window would have a constant value. The grid points without TEC value are interpolated using Barnes objective analysis. We presentour regional TEC maps, which can describe better on the status of ionosphere over Korean peninsular compared to IGS TEC maps.

The Improvement of the Positioning Precision for Single Frequency Receiver Using Ionospheric Model Based on GPS Network (GPS 네트워크 기반의 전리층 모델을 이용한 단일 주파수 수신기의 측위 정밀도 향상)

  • Choi Byung-Kyu;Lee Sang-Jeong;Park Jong-Uk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.167-173
    • /
    • 2006
  • Ionosphere is the largest error source on propagation of GPS signals. Dual frequency (L1,L2) GPS receiver can be effectively able to eliminate the ionosphere error by using linear combination of two frequencies, but the single frequency receiver (L1) have to compute the ionosphere error. In this research, we developed the new ionospheric model with $1^{\circ}$ by $1^{\circ}$ spatial resolution based on the grid from using 9 GPS reference stations which have been operated by KASI (Korea Astronomy and Space Science Institute) and computed TEC (Total Electron Contents) over South Korea by epoch. This paper gives the positioning results of Klobuchar model with that of a newly developed KASI regional ionospheric model and shows the positioning precision of the KASI regional ionospheric model along with TEC variation of ionosphere.

NEAR REAL-TIME IONOSPHERIC MODELING USING A RBGIONAL GPS NETWORK (지역적 GPS 관측망을 이용한 준실시간 전리층 모델링)

  • Choi, Byung-Kyu;Park, Jong-Uk;Chung, Jeong-Kyun;Park, Phil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.283-292
    • /
    • 2005
  • Ionosphere is deeply coupled to the space environment and introduces the perturbations to radio signal because of its electromagnetic characteristics. Therefore, the status of ionosphere can be estimated by analyzing the GPS signal errors which are penetrating the ionosphere and it can be the key to understand the global circulation and change in the upper atmosphere, and the characteristics of space weather. We used 9 GPS Continuously Operating Reference Stations (CORS), which have been operated by Korea Astronomy and Space Science Institute (KASI) , to determine the high precision of Total Electron Content (TEC) and the pseudorange data which is phase-leveled by a linear combination with carrier phase to reduce the inherent noise. We developed the method to model a regional ionosphere with grid form and its results over South Korea with $0.25^{\circ}\;by\;0.25^{\circ}$ spatial resolution. To improve the precision of ionosphere's TEC value, we applied IDW (Inverse Distance Weight) and Kalman Filtering method. The regional ionospheric model developed by this research was compared with GIMs (Global Ionosphere Maps) preduced by Ionosphere Working Group for 8 days and the results show $3\~4$ TECU difference in RMS values.