• 제목/요약/키워드: 산화니켈

검색결과 251건 처리시간 0.024초

다양한 발열체가 분산된 폴리우레탄 접착 필름의 유도가열 거동 비교 (Comparison of Heating Behavior of Various Susceptor-embedded Thermoplastic Polyurethane Adhesive Films via Induction Heating)

  • 권용성;배덕환;손민영
    • Composites Research
    • /
    • 제30권3호
    • /
    • pp.181-187
    • /
    • 2017
  • 나노 및 마이크로 크기의 철(Fe), 마그네타이트($Fe_3O_4$) 및 니켈(Ni) 입자가 분산된 열가소성 폴리우레탄(TPU) 접착필름에서 각 금속의 크기 및 형상 그리고 피착재의 종류에 따른 접착필름의 유도가열 거동을 연구하였다. 연구결과 동일한 첨가량 및 유사한 입자 크기에서 철과 니켈이 분산된 열가소성 TPU 접착필름에 비해 마그네타이트가 분산된 TPU 접착필름의 발열이 높게 나타났다. 철과 니켈의 입자 크기가 자기장의 표면 침투 깊이(Penetration skin depth) 보다 클 경우 와전류에 의한 발열로 인해 입자 크기가 커질수록 초기 승온속도와 최고 온도가 증가하는 것을 확인하였다. 서로 다른 형태를 갖는 니켈 입자를 사용한 유도가열 실험 결과 편상(flake)의 입자가 TPU 접착필름에 분산되었을 때 자기이력(Magnetic hysteresis)에 의한 열 발생으로 가장 높은 발열이 나타남을 알 수 있었다. 또한 금속 입자가 분산된 TPU 접착필름이 서로 다른 피착재에 적용되었을 때 발열현상이 상이하게 나타났으며 피착재의 열전도도에 따른 결과를 확인하였다.

$NiFe_2O_4$ 금속산화물의 열화학싸이클에 의한 물분해 수소생산기술 (Thermo-chemical Cycle with $NiFe_2O_4$ for Water-Splitting to Produce Hydrogen)

  • 한상범;강태범;주오심;정광덕
    • 한국수소및신에너지학회논문집
    • /
    • 제19권2호
    • /
    • pp.132-138
    • /
    • 2008
  • 금속산화물의 열화학싸이클에 의한 수소생산 소재중 안정성이 우수하고 물분해 수소생산능이 비교적 우수한 $NiFe_2O_4$를 합성하여 열화학수소생산공정 적용시 최적화의 조건에 대하여 검토하였다. 합성한 $NiFe_2O_4$는 격자상수가 $8.34\;{\AA}$이었고, 뫼스바우어에 의해 구조는 Ni이 페라이트 구조인 $AB_2O$의 B위치에 주로 위치하는, A 및 B의 상대적 흡수강도가 57.9:42.1인 역스피넬구조를 보이고 있다. 이러한 구조의 $NiFe_2O_4$의 열적환원은 $610^{\circ}C$부터 시작하여 $1200^{\circ}C$에 이르는 동안 약 1.1 wt%의 무게감소가 관찰된다. 물에 의한 산화과정에서 수소가 발생하게 되는데, $1200^{\circ}C$이하의 환원온도에서 가능한 수소생산량은 약 $0.45\;cm^3/g{\codt}cycle$ 이었다. 산화 환원의 반복과정에서 $NiFe_2O_4$의 XRD에 의한 구조변화는 관찰되지 않아 매우 안정한 구조를 갖는다는 것을 보여주었다. 수소생산을 위한 무게당 싸이클당 수소생산양은 산화 환원과정의 온도범위가 가장 중요하였고 물의 접촉시간은 중요한 요소가 되지 않았다. 열적 환원과정에서 많은 양의 수소생산성능을 보이기 위해서는 $1200^{\circ}C$이상의 고온을 필요로 하는 것을 보여주었다.

전이금속/$\gamma-Al_2O_3$ 촉매의 VOCs 산화특성 (VOCs Oxidation Characteristics of Transition $Metals/\gamma-Al_2O_3$ Catalyst)

  • 김봉수;박영성
    • 대한환경공학회지
    • /
    • 제29권4호
    • /
    • pp.444-451
    • /
    • 2007
  • 본 연구에서는 $\gamma-Al_2O_3$에 전이금속들을 함침시킨 촉매를 고정층 반응기에 충전시킨후 휘발성유기물질(VOCs)인 밴젠을 일정농도로 공급하면서 촉매산화 특성을 살펴보았다. 전이금속으로는 구리, 니켈, 망간, 철등을 포함해 8가지 금속을 선정하였고, 실험조건은 반응온도 $200\sim500^{\circ}C$, 벤젠의 농도 $1,000\sim3,000$ ppm, 공간속도 $5,000\sim60,000\;hr^{-1}$의 범위로 적용하였다. BET분석, 전자주사현미경(SEM), XRD분석을 통해 제조된 촉매의 물성을 조사하였으며, VOC 촉매산화반응의 전환율에 대하여 고찰하였다. 실험결과, VOC농도와 공간속도가 낮을수록 VOC산화반응의 전환율은 증가함을 알 수 있었다. 여러 전이금속촉매들 중에 Cu촉매가 벤젠에 대해 가장 높은 활성을 나타내었고, 소성온도 $500^{\circ}C$조건에서 전이금속의 함침율이 15 wt%일 경우 가장 높은 전환율을 나타내었다.

전지기술의 국내외 연구동향 (The Present and the Prospects for Batteries)

  • 이주성
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 1999년도 추계학술발표회 초록집
    • /
    • pp.1-2
    • /
    • 1999
  • 시간과 공간의 구애를 받지 않는 양질의 음성, 화상, 문자정보의 교환을 위한 노력으로 디지털 휴대폰과 휴대용 컴퓨터가 등장하면서 음성과 문자정보의 교환분야에 커다란 진보를 이룩하였다. 그러나 현재는 휴대폰이 음성정보에 문자정보교환이 추가된 상황이기 때문에, 아직도 관련 정보교환기술 및 기기개발이 진행되고 있다. 앞으로 휴대폰과 휴대용 컴퓨터의 기능을 통합하고 화상정보까지 결합된 휴대용 정보기기를 위해서는 전자회로의 집적화 및 통신속도 증대가 필수적이다. 또한 이들 휴대용 정보기기를 구동시키기 위한 전력도 증가될 것으로 예측되기 때문에, 현재 전원으로 사용되는 2차전지보다 에너지 밀도가 더욱 증패된 전지가 요구될 것으로 예상된다. 그리고 내연기관의 배기에 의해 발생되는 환정오염문제를 해결하기 위한 방법중의 일환으로 전기자동차 개발이 진행되고 있으며, 이들 전기자동차에 2차전지를 장착하기 위해서 경제성이 있고, 고속충전이 가능하고, 안전성이 높은 고에너지 밀도의 2차 전지 개발이 요구되고 있다. 현재 2차전지는 음극재료나 양극재료에 따라 낚축전지, 니켈/카드륨(Ni/Cd) 전지, 니켈/수소(Ni/MH) 전지, 라륨 2 차전지등이 있으며, 전극재료의 고유특성에 의해 전위와 애너지 밀도가 결정된다. 특히 리튬 2차전지는 리튬의 낮은 산화환원전위와 분자량으로 인해 에너지 밀도가 높기 때문에 앞에서 언급한 휴대용 전자기기의 구동전원으로 많이 사용되고 있다. 리튬 2차전지는 음극 재료가 금속리튬인 경우는 리튬금속으로, 탄소재료인 경우는 리튬이온이라 하며, 한편으로 전해질이 고체 고분자이거나 혹은 역체 유기용매와 리튬염을 고분자와 혼성시킨 겔(gel)인 경우는 고분자로, 전해짙이 리튬염이 전리되어 있는 유동성 액체일 경우는 고분자를 생략하여 구분하고 있다. 즉 리튬금속 2 차전지(LB), 리튬이온 2 차전지(LIB), 리튬금속 고분자 2차전지(LPB), 리튬 이온 고분자 2차전지(LIPB)로 크게 구분된다. 금속리듐을 음극으로 사용하고 전해질로는 리튬염이 전리되어 있는 액체유기용매 를 사용한 리튬금속 2차전지는, 금속리튬전극이 충방전 과정을 반복하면서, 전리된 리튬이 균일하게 산화환원되지 못하고 표변에서 양극방향으로 성장하는 수지상 (dendrite) 현상으로 인해 안전성 확보에 문게가 있었다. 리튬과 알루미늄 합금형태로 음극에 사용한 동전형 전지는 상용화 되었지만, 이러한 단점을 개선하기 위해 리튬이온이 금속으로 석활되는 환원반응전위보다 높은 전위에서 전극재료가 충전되면서 리튬이온이 저장되고, 방전되면서 배출되는 탄소를 음극재료로, 그리고 리튬이온이 충방 전시 가역적으로 삼입 탈리되는 층상의 리튬금속산화물을 양극으로 구성하고, 엑체 전해질과 다공성 고분자 분리막을 사용한 것이 LIB이다. LIB에서 리튬이온의 이동이 가능한 액체전해질의 가능을 고분자 전해질이 대신함으로서 보다 높은 안정성을 확보 한 전지가 LIPB 이다. 또한 고분자 전해질을 사용한 경우 금속리튬상에서의 수지상 성장이 저하되는 현상이 관찰됨으로서, 이론용량이 3,860mAh/g 에 달하는 리튬금속 혹은 합금을 고분자 전지에서 음극으로 사용하고자 하는 2 차전지가 LPB 이다. 리튬 2차전지는 비록 1989년 액체전해질을 사용한 금속리튬 2차전지의 실패전력을 안고있지만 궁극적으로는 이론적으로 최대의 에너지밀도를 가지고 있는 LPB를 지 향할 것으로 예상되지만 가까운 장래에 실현되기는 어려울 것이다. 따라서 향후의 라튬 2차전지의 전개방향은 현재의 LIB를 고분자 전해질을 채용하는 LIPB로 진행시커면서 저가의 전극재료개발을 지속적으로 추진할 것으로 예상된다. 현재 리튬 2차전지는 소형전지에 국한되고 있지만 전기자동차나 전력저장용으로 이를 대형화시커기 위해서는 열적특성이 우수하고 저가인 전극재료개발이 선행되야하기 때문에, 저가의 탄소재료와 코발트산화물을 대신할 수 있는 철, 망칸 또는 니켈산 화물의 개발이 필요하다.

  • PDF

Fe-Ni 합금(合金) 스크랩의 황산(黃酸) 침출액(浸出液)으로부터 Ni와 Fe의 분리(分離) (Separation of Ni and Fe from $H_2SO_4$ leaching solution of scrapped Fe-Ni alloy)

  • 유경근;;김민석;유재민;정진기;이재천
    • 자원리싸이클링
    • /
    • 제17권1호
    • /
    • pp.80-87
    • /
    • 2008
  • 주요 성분으로서 철$(Fe^{2+}/Fe^{3+}=1.03)$ 47g/L, 니켈; 23.5g/L, 0.90M $H_2SO_4$의 조성을 갖는 철-니켈 합금 스크랩의 황산 침출액으로부터 시멘테이션법과 용매추출법으로 니켈과 철 이온을 분리하는 연구를 수행하였다 침출액으로부터 니켈 이온의 시멘테이션을 위하여 철 분말이 환원제로 사용되었다. $60{\sim}80^{\circ}C$에서 4.0 당량의 철 분말을 투입하였을 때 니켈 이온의 환원율은 $17{\sim}20%$에 불과하였으며, 이것은 니켈 이온의 환원석출이 $Fe^{3+}$의 환원반응과 황산의 중화반응이 완료된 후에 시작되었기 때문이다. 이로부터 주성분으로 $Fe^{3+}$를 함유하고 있는 침출액으로부터 니켈 이온의 분리회수에 있어서 시멘테이션은 비효율적임이 확인되었다. D2EHPA를 추출제로 사용하는 철 이온의 용매추출을 위하여 $Fe^{2+}$$Fe^{3+}$로 전환시켰다. 1.2 당량의 35% $H_2O_2$를 첨가함으로서 침출액에 존재하는 모든 $Fe^{2+}$$Fe^{3+}$로 산화되었다. 20 vol.% D2EHPA를 사용하여 cross-current 방식으로 침출액(23.5 g/L $Fe^{3+}$)으로부터 $Fe^{3+}$의 용매추출을 행하였을 때, 4단 추출에서 99.6%의 $Fe^{3+}$를 추출하여 제거할 수 있었으며 순도가 98.5%인 황산니켈 용액이 얻어졌다

염화철 에칭 용액 재생을 위한 액상 및 고상 산화제를 이용한 산화공정에 대한 연구 (Oxidation Process for the Etching Solution Regeneration of Ferric Chloride Using Liquid and Solid Oxidizing Agent)

  • 김대원;박일정;김건홍;채병만;이상우;최희락;정항철
    • 청정기술
    • /
    • 제23권2호
    • /
    • pp.158-162
    • /
    • 2017
  • 철, 구리, 알루미늄, 니켈 등의 금속을 에칭하기 위한 에칭액으로 $FeCl_3$ 용액이 사용되며, 에칭 과정에서 $Fe^{3+}$$Fe^{2+}$로 환원되면서 에칭속도를 저하시키고, 에칭효율이 감소하게 된다. 또한 에칭 후 발생하는 염화철 에칭폐액은 환경적, 경제적으로 문제를 지니기 때문에 에칭액을 재생하여 재사용 할 필요가 있다. 본 연구에서는 $FeCl_2$ 용액에 HCl을 첨가한 후, 산화제로 $H_2O_2$, $NaClO_3$를 첨가하여 용액 내 $Fe^{2+}$를 산화시켰으며, 산화과정에서 산화-환원전위(ORP)와 산화율간의 관계를 조사하였다. ORP는 $H_2O_2$$NaClO_3$의 농도가 증가함에 따라 증가하였으며, 산화가 진행되면서 점차 감소하여 산화가 완료된 후에 일정한 ORP를 유지하였다. Nernst 식과 일치하는 결과를 보였다. 또한 충분한 양의 HCl 및 $H_2O_2$, $NaClO_3$를 첨가하였을 경우, 약 99% 이상 산화가 이루어짐을 알 수 있었다.

NiO-$TiO_2$ 광전극을 이용한 염료감응형태양전지의 전기화학적 특성 (Electrochemical Properties of Photoelectrode using NiO-$TiO_2$)

  • 박경희;김은미;조흥관;박아름;왕교;구할본
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.68.1-68.1
    • /
    • 2010
  • 염료감응형 태양전지에서 가능한 광전자의 이동경로에 대해 살펴보면 빛 에너지를 흡수한 루테늄계 염료는 기저상태에서 여기상태로 전이한 후 광전자의 반도체 전도띠로 전자주입이 이루어진다. 이러한 전자 중 일부는 반도체산화물의 트랩으로의 전이와 트랩에서 염료 기저상태로의 전이가 일어나고 일부 전자는 전해질의 이온종 또는 산화된 염료와 재결합하는 현상이 일어난다. 본 연구에서는 이러한 전자의 재결합을 막고자 p형 반도체인 NiO paste를 제작하여 $TiO_2$ 광전극 층 위에 코팅하였다. 코팅된 NiO 층은 홀수용체로서 염료에 전자를 제공해 주는 역할과 동시에 $TiO_2$ 가전도대로 이동되었던 전자들이 염료의 기저상태의 홀이나 전해질로의 전자 유입이 이루어지는 전자의 재결합을 막는 방벽의 역할을 동시에 하게 된다. 제작된 염료감응형 태양전지 셀의 에너지 변환효율 특성을 알아보기 위하여 1000 W Xe Arc Lamp와 Air Mass 1.5, filter가 장착된 Thermo-Preal (USA) Solar simulator system을 사용하여 개방전압 (Voc), 광전류 (Isc), fill factor (FF), 에너지변환 효율 (${\eta}$)을 조사하였으며 광학현미경을 통해 염료의 흡착 정도를 비교해 보았다. NiO의 코팅 두께나 NiO 나노입자 크기에 따라 염료감응형태양전지에서 에너지변환효율에 미치는 영향을 조사하였다. NiO가 코팅되지 않은 $TiO_2$ 광전극과 비교해 볼 때 NiO 코팅시 Voc와 Isc의 증가로 인해 에너지변환효율이 20% 이상 향상되는 것을 볼 수 있었다.

  • PDF

수소첨가반응용 니켈 폐촉매의 활성재생에 관한 연구 (II) (A Study on the Regeneration of Ni Catalyst for Hydrogenation(II))

  • 김정훈;이근대;이호인
    • 공업화학
    • /
    • 제2권1호
    • /
    • pp.47-55
    • /
    • 1991
  • 탄소침적된 수소첨가반응용 Ni 촉매의 활성재생에 관하여 연구하였다. 침적된 탄소는 여러 가지 농도의 산소로 산화시켜 제거하였으며, 촉매의 활성은 아닐린 수소첨가반응을 model 반응으로 하여 측정하였다. 탄소침적된 촉매를 산화처리할 경우 처리온도가 증가함에 따라 표면적이 증가하다가 감소하는 현상을 보였으며, 최대 표면적을 나타내는 처리온도는 처리 산소농도가 감소함에 따라 증가하였다. 처리 산소농도가 높을수록 침적탄소의 산화에 의한 반응열로 인하여 Ni 입자의 소결현상 및 담체의 기공감소가 심하게 나타났다. 5 % 산소로 처리한 촉매의 경우, 촉매의 활성이 약 90% 까지 회복되었으나 20% 산소로 처리한 촉매의 경우, 활성의 회복을 기대할 수 없었다. 5 % 산소로 재생처리할 경우, 촉매의 활성은 산화처리 시간이 증가할수록 증가하였으나, 1 시간 이후에는 거의 일정하였다.

  • PDF

고분자 공중합체와 알루미늄 양극 산화막 템플레이트를 이용한 나노점 배열 형성 (Fabrication of Nanodot Arrays Via Pulsed Laser Deposition Technique Using (PS-b-PMMA) Diblock Copolymer and Anodic Aluminum Oxide Templates)

  • 박성찬;배창현;박승민;하정숙
    • 한국진공학회지
    • /
    • 제15권4호
    • /
    • pp.427-433
    • /
    • 2006
  • 자발적인 미세상 분리에 의해 실린더형의 규칙적인 배열을 형성하는 고분자 공중합체와 알루미늄의 양극산화에 의해 실린더형 기공 배열이 형성되는 알루미나 템플레이트를 이용하여 다양한 물질의 나노점 배열을 형성하였다. 펄스형 레이저 기상 증착법을 이용하여 은, 니켈, 산화아연, 실리콘, 코발트 / 백금 나노점 배열을 얻었는데, 나노점의 크기와 배열은 템플레이트의 기공 크기와 배열을 보여주었다. 이러한 템플레이트 기법을 이용하면 나노점의 밀도는 고 분자 공중합체와 알루미나의 경우 각각 $6{\times}10^{11}/cm^2$$1{\times}10^{10}/cm^2$ 이다. 이중 에르븀이 도핑된 실리콘 나노점과 ZnO 나노점 배열은 PL 측정을 통하여 물질의 광학성질에 관해 알아보았다. 에르븀이 도핑된 실리콘 나노점 배열은 $1.54{\mu}m$에서 강한 빛을 내며 ZnO 나노점 배열은 380 nm 에서 강한 PL 세기를 나타낸다.

CNG 버스용 NGOC/LNT 촉매의 CH4와 NOx의 동시 저감 (Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses)

  • 서충길
    • 한국산학기술학회논문지
    • /
    • 제19권6호
    • /
    • pp.167-175
    • /
    • 2018
  • 천연 가스는 공기 오염 물질을 거의 배출하지 않는 깨끗한 연료입니다. 이 연구의 목적은 CNG 버스용 NGOC/LNT(천연가스산화촉매/질소산화물흡장)촉매의 메탄과 질소산화물 동시 저감에 관한 연구로 메탄과 질소산화물 저감 성능 개선과 관련하여 조촉매, washcoat 담지량, 교반 시간 및 담체 종류에 대해 주로 초점을 두었다. 더구나, 니켈은 알칼리성의 독성 산화물이고 메탄에 영향을 미치는 효과가 있기 때문에, 3 wt% 니켈이 담지된 천연가스산화촉매는 일반적으로 메탄 전환율을 통해 우수한 메탄 감소 성능을 나타낸다. 담체에 담지량이 적으면 유해 가스의 흡장량이 충분치 않고 워시 코트가 너무 많이 담지되면 담체의 셀이 막히게 되었다. 촉매의 경제적을 고려할 때 촉매에 담지되는 양은 124g/L가 적절하다. 물질마다 5시간 동안 교반된 NGOC/LNT 촉매의 200에서 550도 까지 NOx 전환율은 2시간 동안 교반된 NGOC/LNT 촉매보다 전체 온도 범위에서 10-15% 우수한 성능을 보였다. 세라믹 담체의 NGOC/LNT 촉매는 메탈 담체보다 약 20% 수준의 높은 메탄 저감 성능을 나타냈다.