Separation of Ni and Fe from $H_2SO_4$ leaching solution of scrapped Fe-Ni alloy

Fe-Ni 합금(合金) 스크랩의 황산(黃酸) 침출액(浸出液)으로부터 Ni와 Fe의 분리(分離)

  • Yoo, Kyoung-Keun (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM)) ;
  • Jha, Manis Kumar (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM)) ;
  • Kim, Min-Seuk (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM)) ;
  • Yoo, Jae-Min (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM)) ;
  • Jeong, Jin-Ki (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM)) ;
  • Lee, Jae-Chun (Minerals & Materials Processing Division, Korea Institute of Geoscience & Mineral Resources(KIGAM))
  • 유경근 (한국지질자원연구원 자원활용소재연구부) ;
  • ;
  • 김민석 (한국지질자원연구원 자원활용소재연구부) ;
  • 유재민 (한국지질자원연구원 자원활용소재연구부) ;
  • 정진기 (한국지질자원연구원 자원활용소재연구부) ;
  • 이재천 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2008.02.27

Abstract

Cementation and solvent extraction processes were studied to separate nickel and iron ions from the $H_2SO_4$ leaching solution with 47 g/L $Fe(Fe^{2+}/Fe^{3+}=1.03),$, 23.5 g/L Ni and 0.90M $H_2SO_4$ which leached from Fe-Ni alloy. Iron powder was used as a reducing agent for the cementation of Ni ion from the leaching solution. The reduction percentage of Ni ion was $17{\sim}20%$ by adding 4 times stoichiometric amount of iron powder at $60{\sim}80$. This may result from the fact that the cementation of Ni ion occurred after the reduction of $Fe^{3+}$ to $Fe^{2+}$ and the neutralization of $H_2SO_4$ with iron powder. The cementation process was proved to be unfeasible for the separation/recovery of Ni ion from the leaching solution including $Fe^{3+}$ as a major component. $Fe^{2+}$ present in the leaching solution was converted to $Fe^{3+}$ for solvent extraction of Fe ion using D2EHPA in kerosene as a extractant. The oxidation of $Fe^{2+}$ to $Fe^{3+}$ was completed by the addition of 1.2 times stoichiometric amount of 35% $H_2SO_4$. 99.6% $Fe^{3+}$ was extracted from the leaching solution (23.5 g/L $Fe^{3+}$) by 4 stages cross-current extraction using 20 vol.% D2EHPA in kerosene. $NiSO_4$ solution with 98.5% purity was recovered from the $H_2SO_4$ leaching solution of scrapped Fe-Ni alloy.

주요 성분으로서 철$(Fe^{2+}/Fe^{3+}=1.03)$ 47g/L, 니켈; 23.5g/L, 0.90M $H_2SO_4$의 조성을 갖는 철-니켈 합금 스크랩의 황산 침출액으로부터 시멘테이션법과 용매추출법으로 니켈과 철 이온을 분리하는 연구를 수행하였다 침출액으로부터 니켈 이온의 시멘테이션을 위하여 철 분말이 환원제로 사용되었다. $60{\sim}80^{\circ}C$에서 4.0 당량의 철 분말을 투입하였을 때 니켈 이온의 환원율은 $17{\sim}20%$에 불과하였으며, 이것은 니켈 이온의 환원석출이 $Fe^{3+}$의 환원반응과 황산의 중화반응이 완료된 후에 시작되었기 때문이다. 이로부터 주성분으로 $Fe^{3+}$를 함유하고 있는 침출액으로부터 니켈 이온의 분리회수에 있어서 시멘테이션은 비효율적임이 확인되었다. D2EHPA를 추출제로 사용하는 철 이온의 용매추출을 위하여 $Fe^{2+}$$Fe^{3+}$로 전환시켰다. 1.2 당량의 35% $H_2O_2$를 첨가함으로서 침출액에 존재하는 모든 $Fe^{2+}$$Fe^{3+}$로 산화되었다. 20 vol.% D2EHPA를 사용하여 cross-current 방식으로 침출액(23.5 g/L $Fe^{3+}$)으로부터 $Fe^{3+}$의 용매추출을 행하였을 때, 4단 추출에서 99.6%의 $Fe^{3+}$를 추출하여 제거할 수 있었으며 순도가 98.5%인 황산니켈 용액이 얻어졌다

Keywords

References

  1. Nickel Institute, 2007, Nickel and its uses, http://www. nickelinstitute.org/index.cfm/ci_id/13/la_id/1.htm
  2. Kuck, P. H., 2007: Nickel in 2005 Minerals Yearbook: Volume 1. Metal and Mineral, U.S. Geology Survey, U.S. Department of the Interior, Reston, VA, USA
  3. Kerfoot, D. G. E., 1997, Nickel in Handbook of Extractive Metallurgy: Volume II. Primary Metals, Edited by Habashi, Fathi, pp. 716-771, WILEY-VCH, Weinheim, Germany
  4. Papp, J. F., 2007: Recycling-Metals in 2005 Minerals Yearbook: Volume 1. Metal and Mineral, U.S. Geology Survey, U.S. Department of the Interior, Reston, VA, USA
  5. Tsai, Shang-Lin and Tsai, Min-Shing, 1988: A study of the extraction of vanadium and nickel in oil-fired fly ash, Resources, Conservation and Recycling, 22(3-4), pp. 163- 176
  6. 유연태, ralqudrb, 박경호, 홍성웅, 1995, 중유회 소각재로 부터 바나듐, 니켈 침출에 관한 기초적 연구, 한국자원리싸이클링학회지, 4(3), pp. 32-39
  7. Cavallini, M. et al., 2000: Laboratory and Pilot Plant Processing of Spent Ni-Cd Batteries, in Recycling of Metals and Engineered Materials IV, Proceedings of the Fourth International Symposium on Recycling of Metals and Engineered Materials, Edited by Stewart, Jr., D.L., et al., pp. 471-478, the 2000 TMS Fall Extraction & Processing Meeting, October 22-25, 2000, Pittsburgh, Pennsylvania, USA
  8. Berrebi, G., Dufresne, P., and Jacquier, Y., 1994: Recycling of spent hydroprocessing catalysts: EURECAT technology, Resources, Conservation and Recycling, 10(1-2), pp. 1-9 https://doi.org/10.1016/0921-3449(94)90032-9
  9. Eun-young Kim et al., 2007: Leaching behavior of nickel from waste multi-layer ceramic capacitors, Hydrometallurgy, 86(1-2), pp. 89-95 https://doi.org/10.1016/j.hydromet.2006.11.007
  10. 田中幹也, 2004: 無電解ニッケルにおけるニッケルリサイク ルAIST Today4(1)pp. 16
  11. Arregui, V., Gordon, A.R. and Steintveit, G., 1980, The jarosite process-past, present and future, in Lead-Zinc-Tin '80, Edited by Cigan, J.M., Mackey, T.S., and O'Keefe, T.J., pp. 97-123, TMS-AIME, Warrendale, PA, USA
  12. Delvaux, R., 1976, Lixiviation de minerais de zinc grilles selon le procede gothite, Metallurgie, 16(3), pp. 154-163
  13. Tsunoda, S. et al., 1973, The construction and operation of the Iijima electrolytic zin plant, paper A73-65, presented at 1973 TMS-AIME Annual Meeting, Chicago, IL, USA
  14. Aue, A., et al., 1971, Separation of iron, cobalt and nickel from scrap alloy by a solvent extraction process, In Proc. ISEC '71, pp. 447-450, Soc. Chem. Ind., London, England
  15. Ritcey, G. M., 1986, Iron-an overview its control in solvent extraction of metals, Iron Control in Hydrometallurgy, Edited by Dutrizac, J.E. and Monhemius, A.J., pp. 247-281, ELLIS HORWOOD LIMITED, West Sussex, England
  16. 유효신, 이강인, 이재천, 1992, 국내산 황산니켈로부터 수소환원법에 의한 고순도 니켈 분말의 제조, 대한금속학회지, 30(1), pp. 22-28
  17. Ismael, M. R. C. and Carvalho, J. M. R., 2003, Iron recovery from sulphate leach liquors in zinc hydrometallurgy, Minerals Engineering, 16, pp. 31-39 https://doi.org/10.1016/S0892-6875(02)00310-2
  18. Principe, F. and Demopoulos, G. P., 2004, Comparative study of iron(III) separation from zinc sulphate-sulphuric acid solutions using the organophosphorus extractants, OPAP and D2EHPA Part I: Extraction, Hydrometallurgy, 74, pp. 93-102 https://doi.org/10.1016/j.hydromet.2004.01.004
  19. John A. Dean : Lange's Handbook of Chemistry, 15th edition, p. 514, Mcgraw-Hill, Inc., NewYork (1965)
  20. Roddy, J. W., Coleman, C. F., and Arai, S. 1971, Mechanism of the slow extraction of iron(III) from acid perchlorate solutions by di(2-ethylhexyl) phosphoric acid in n-octane, J. Inorg. Nucl. Chem., 33, pp. 1099-1118 https://doi.org/10.1016/0022-1902(71)80179-3
  21. Ritcey, G. M. and Ashbrook, A. W., 1984, Extractants, in Solvent Extraction: Principles and Applications to Process Metallurgy, Part I, pp. 87-171, Elsevier Science Publishers B.V., Amsterdam, Netherlands