• Title/Summary/Keyword: 사용자 클러스터링

Search Result 407, Processing Time 0.025 seconds

Anomaly Intrusion Detection by Clustering Transactional Audit Streams in a Host Computer (사용자 로그 스트림 클러스터링에 의한 실시간 침입탐지 기법)

  • Park, Nam-Hun;Oh, Sang-Hyun;Lee, Won-Suk
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.594-599
    • /
    • 2008
  • 침입탐지에 있어서 사용자 로그 분석은 중요한 주제로서, 기존의 연구들에서 클러스터링 기법들을 사용하여 저장된 사용자 로그들을 분석해왔다. 하지만, 이러한 방법은 고정된 사용자 패턴 분석에는 효율적이지만, 로그 스트림과 같이 무한히 생성되어 사용자 패턴이 변화하는 경우 변화하는 패턴을 분석할 수 없다. 본 연구에서는 무한히 생성되는 사용자 로그 스트림을 대상으로 실시간 침입탐지 방법을 제시한다. 사용자로그의 정보는 사용자 행동에 대한 특성값으로 표현되어, 이러한 특성값들에 대해 실시간 데이터 스트림 클러스터링을 수행하여 이들을 클러스터로 분류한다. 각 클러스터는 사용자의 정상로그에 대한 특성값을 반영하게 되며, 그 결과 과거 사용자 로그에 대한 저장없이 새로운 로그 스트림을 지속적으로 분석할 수 있다. 결과적으로 사용자의 비정상행동을 실시간으로 탐지할 수 있으며, 이를 실험을 통해 평가하였다.

  • PDF

The Document Clustering using LSI of IR (LSI를 이용한 문서 클러스터링)

  • 고지현;최영란;유준현;박순철
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.330-335
    • /
    • 2002
  • The most critical issue in information retrieval system is to have adequate results corresponding to user requests. When all documents related with user inquiry retrieve, it is not easy not only to find correct document what user wants but is limited. Therefore, clustering method that grouped by corresponding documents has widely used so far. In this paper, we cluster on the basis of the meaning rather than the index term in the existing document and a LSI method is applied by this reason. Furthermore, we distinguish and analyze differences from the clustering using widely-used K-Means algorithm for the document clustering.

  • PDF

The Analysis of Clustering Result with Weight Change using LSI (LSI 를 이용한 가중치 변화에 따른 클러스터링 결과 분석)

  • Goh, Ji-Hyun;Oh, Hyung-Jin;Park, Soon-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.1009-1012
    • /
    • 2002
  • 정보검색시스템에서 가장 중요한 것은 사용자의 요구에 부합하는 결과를 도출하는 것이다. 이를 위하여 사용자의 질의와 연관된 모든 문서들을 추출하게 되는데, 이 많은 결과 문서들 중에서 사용자가 원하는 문서는 소수이고, 원하는 문서를 찾는 것도 쉽지 않다. 따라서 적절한 결과 문서 도출을 위하여 연관된 문서들끼리 그룹화 시키는 클러스터링 방법이 많이 이용된다. 본 논문에서는 클러스터링에 영향을 끼치는 요소 중 문서별 색인어의 가중치가 클러스터링에 끼치는 영향을 알아보았다. 이를 위해 가중치의 변화에 따른 클러스터링 된 결과를 LSI 를 이용하여 도식화하고 그 결과를 분석하였다.

  • PDF

Advanced Clustering Algorithm for Documents Visualization (문서 시각화를 위한 개선된 클러스터링 알고리즘)

  • 신광철;한상용
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.256-258
    • /
    • 2002
  • 본 논문은 주어진 문서집합에 대한 유사도 검사를 통해 주어진 문서집합의 내용을 사용자가 직관적으로 파악할 수 있도록 하는 클러스터링 시각화 알고리즘에 관한 것이다. 제안하는 방법의 핵심은 주어진 문서 집합의 각 문서 사이의 유사도를 측정하여 각 문서 주변의 밀집도를 파악하고, 밀집도가 높은 문서들을 묶어 하나의 클러스터로 구성한 후, 구성된 각각의 클러스터의 키워드를 제공함으로 사용자가 해당 문서 집합의 내용을 보다 직관적으로 파악할 수 있도록 한 것이다. 우리는 TIME 데이터 집합에 대해 제시하는 알고리즘을 적용해 실험한 후 그 결과를 기존의 spherical k-means에 의해 클러스터링한 결과와 비교하여 제안하는 방법이 사용자에게 더 나은 시각화 정보를 제공함을 알아보았다.

  • PDF

The Study on Improvement of Cohesion of Clustering in Incremental Concept Learning (점진적 개념학습의 클러스터 응집도 개선)

  • Baek, Hey-Jung;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.297-304
    • /
    • 2003
  • Nowdays, with the explosive growth of the web information, web users Increase requests of systems which collect and analyze web pages that are relevant. The systems which were develop to solve the request were used clustering methods to improve the duality of information. Clustering is defining inter relationship of unordered data and grouping data systematically. The systems using clustering provide the grouped information to the users. So, they understand the information efficiently. We proposed a hybrid clustering method to cluster a large quantity of data efficiently. By that method, We generate initial clusters using COBWEB Algorithm and refine them using Ezioni Algorithm. This paper adds two ideas in prior hybrid clustering method to increment accuracy and efficiency of clusters. Firstly, we propose the clustering method considering weight of attributes of data. Second, we redefine evaluation functions which generate initial clusters to increase efficiency in clustering. Clustering method proposed in this paper processes a large quantity of data and diminish of dependancy on sequence of input of data. So the clusters are useful to make user profiles in high quality. Ultimately, we will show that the proposed clustering method outperforms the pervious clustering method in the aspect of precision and execution speed.

Context-awareness User Analysis based on Clustering Algorithm (클러스터링 알고리즘기반의 상황인식 사용자 분석)

  • Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.942-948
    • /
    • 2020
  • In this paper, we propose a clustered algorithm that possible more efficient user distinction within clustering using context-aware attribute information. In typically, the data provided to classify interrelationships within cluster information in the process of clustering data will be as a degrade factor if new or newly processing information is treated as contaminated information in comparative information. In this paper, we have developed a clustering algorithm that can extract user's recognition information to solve this problem in using K-means algorithm. The proposed algorithm analyzes the user's clustering attributed parameters from user clusters using accumulated information and clustering according to their attributes. The results of the simulation with the proposed algorithm showed that the user management system was more adaptable in terms of classifying and maintaining multiple users in clusters.

Threshold based User-centric Clustering for Cell-free MIMO Network (셀프리 다중안테나 네트워크를 위한 임계값 기반 사용자 중심 클러스터링)

  • Ryu, Jong Yeol;Lee, Woongsup;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.114-121
    • /
    • 2022
  • In this paper, we consider a user centric clustering in order to guarantee the performance of the users in cell free multiple-input multiple-output (MIMO) network. In the user centric clustering scheme, by using large scale fading coefficients of the connected access points (APs), each user decides own cluster with the APs having the higher the large scale fading coefficients than threshold value compared to the highest large scale fading coefficient. In the determined user centric clusters, the APs design the beamformers and power allocations in the distributed manner and the APs cooperatively transmit data to users by using beamformers and power allocations. In the simulation results, we verify the performance of user centric clustering in terms of the spectral efficiency and we also find the optimal threshold value in the given configuration.

User Oriented clustering of news articles using Tweets Heterogeneous Information Network (트위트 이형 정보 망을 이용한 뉴스 기사의 사용자 지향적 클러스터링)

  • Shoaib, Muhammad;Song, Wang-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.85-94
    • /
    • 2013
  • With the emergence of world wide web, in particular web 2.0 the rapidly growing amount of news articles has created a problem for users in selection of news articles according to their requirements. To overcome this problem different clustering mechanism has been proposed to broadly categorize news articles. However these techniques are totally machine oriented techniques and lack users' participation in the process of decision making for membership of clustering. In order to overcome the issue of zero-participation in the process of clustering news articles in this paper we have proposed a framework for clustering news articles by combining users' judgments that they post on twitter with the news articles to cluster the objects. We have employed twitter hash-tags for this purpose. Furthermore we have computed the credibility of users' based on frequency of retweets for their tweets in order to enhance the accuracy of the clustering membership function. In order to test performance of proposed methodology, we performed experiments on tweets messages tweeted during general election 2013 in Pakistan. Our results proved over claim that using users' output better outcome can be achieved then ordinary clustering algorithms.

A Study of Incremental Clustering Technique based on Ontology (온톨로지 기반 점진적 클러스터링 기법에 관한 연구)

  • Kim Je-Min;Park Young-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.643-645
    • /
    • 2005
  • 클러스터링은 무질서한 데이터들의 상호 연관 관계를 정의하고, 이를 통하여 보다 체계적으로 데이터를 군집화하는 것이다. 클러스터링을 적용한 웹 서비스 시스템은 비슷한 내용을 묶어 제공하기 때문에 사용자는 보다 효율적으로 정보를 제공받을 수 있다. 시멘틱 웹의 기반이 되는 온톨로지는 클러스터링을 위한 완벽한 입력 데이터를 제공한다. 본 논문은 온톨로지를 기반의 메타 데이터를 클러스터링 하기 위한 기법을 제안한다. 본 논문의 목적은 온톨로지 기반의 메타 데이터들의 유사성을 측정하기 위한 평가함수를 정의하고, 이러한 평가함수를 적용한 계층적 클러스터링 알고리즘을 연구하는 것이다.

  • PDF

Video Abstracting Using Scene Change Detection and Clustering (장면전환 검출과 클러스터링을 이용한 비디오 개요 추출)

  • 신성윤;강일고;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.583-587
    • /
    • 2002
  • 비디오를 시청하기 위하여 원하는 비디오를 선택하고자 할 때 사용자들은 비디오의 전반적인 내용을 알 수 있는 방법이 많지 않다. 따라서 비디오 시청을 원하는 사용자들에게 비디오의 전반적인 개요를 보여주어 선택 할 수 있는 방법이 요구된다. 본 논문에서는 전환 검출 방법과 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 $\times$2 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 히스토그램의 차이값을 측정과 샷 병합 알고리즘을 통해 수행하도록 한다.

  • PDF