• Title/Summary/Keyword: 사물통신 장치

Search Result 176, Processing Time 0.028 seconds

Efficient IoT data processing techniques based on deep learning for Edge Network Environments (에지 네트워크 환경을 위한 딥 러닝 기반의 효율적인 IoT 데이터 처리 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.325-331
    • /
    • 2022
  • As IoT devices are used in various ways in an edge network environment, multiple studies are being conducted that utilizes the information collected from IoT devices in various applications. However, it is not easy to apply accurate IoT data immediately as IoT data collected according to network environment (interference, interference, etc.) are frequently missed or error occurs. In order to minimize mistakes in IoT data collected in an edge network environment, this paper proposes a management technique that ensures the reliability of IoT data by randomly generating signature values of IoT data and allocating only Security Information (SI) values to IoT data in bit form. The proposed technique binds IoT data into a blockchain by applying multiple hash chains to asymmetrically link and process data collected from IoT devices. In this case, the blockchainized IoT data uses a probability function to which a weight is applied according to a correlation index based on deep learning. In addition, the proposed technique can expand and operate grouped IoT data into an n-layer structure to lower the integrity and processing cost of IoT data.

A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid (스마트에너지캠퍼스 마이크로그리드에서 사물인터넷 융합 PEM 전기분해와 PEM 연료전지 모니터링 및 운영 연구)

  • Chang, Hui Il;Thapa, Prakash
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • In this paper we are trying to explain the effect of temperature on polymer membrane exchange water electrolysis (PEMWE) and polymer membrane exchange fuel cell (PEMFC) simultaneously. A comprehensive studying approach is proposed and applied to a 50Watt PEM fuel cell system in the laboratory. The monitoring process is carried out through wireless LoRa node and gateway network concept. In this experiment, temperature sensor measure the temperature level of electrolyzer, fuel cell stack and $H_2$ storage tank and transmitted the measured value of data to the management control unit (MCU) through the individual node and gateway of each PEMWE and PEMFC. In MCU we can monitor the temperature and its effect on the performance of the fuel cell system and control it to keep the lower heating value to increase the efficiency of the fuel cell system. And we also proposed a mathematical model and operation algorithm for PEMWE and PEMFC. In this model, PEMWE gives higher efficiency at lower heating level where as PEMFC gives higher efficiency at higher heating value. In order to increase the performance of the fuel cell system, we are going to monitor, communicate and control the temperature and pressure of PEMWE and PEMFC by installing these systems in a building of university which is located in the southern part of Korea.

Dynamic Channel Management Scheme for Device-to-device Communication in Next Generation Downlink Cellular Networks (차세대 하향링크 셀룰러 네트워크에서 단말 간 직접 통신을 위한 유동적 채널관리 방법)

  • Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, the technology of device-to-device(D2D) communication has been receiving big attention to improve the system performance since the amount of high quality/large capacity data traffic from smart phones and various devices of Internet of Things increase rapidly in 5G/6G based next generation cellular networks. However, even though the system performance of macro cells increase by reusing the frequency, the performance of macro user equipments(MUEs) decrease because of the strong interference from D2D user equipments(DUEs). Therefore, this paper proposes a dynamic channel management(DCM) scheme for DUEs to guarantee the performance of MUEs as the number of DUEs increases in next generation downlink cellular networks. In the proposed D2D DCM scheme, macro base stations dynamically assign subchannels to DUEs based on the interference information and signal to interference and noise ratio(SINR) of MUEs. Simulation results show that the proposed D2D DCM scheme outperforms other schemes in terms of the mean MUE capacity as the threshold of the SINR of MUEs incareases.

Proposal of Personalized Recommendation for Korean Food and Tour Using Beacon System (비콘을 활용한 개인 맞춤형 한식과 관광지 추천 관리 시스템 제안)

  • Sung, Kihyuk;Ryu, Gihwan;Yun, Daiyeol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.267-273
    • /
    • 2020
  • Beacon is a wireless communication device that can automatically recognize the smart device in the short distance and transmit the necessary data, Beacon is a representative Internet of Things (IoT) facility in the era of the 4th Industrial Revolution, which is utilized in various fields such as short-distance information delivery, mobile location service, shopping, and marketing, and is constantly evolving. In this paper, it is based on tourist site-based recommendation information service. A system is proposed that recommends customized information according to the user's interest, preference, etc. by incorporating beacon technology. In other words, it acts as an information agent that informs tourists of desired information. In order to meet the needs of tourists, it is necessary to build an intelligent tourism recommendation system. The personalized Korean food and tourism recommendation management system using the beacon technology proposed in this paper is expected to provide high-quality services not only to foreigners visiting Korea but also to Korean tourists.

Design and Implementation of M2M-based Smart Factory Management Systems that controls with Smart Phone (스마트폰과 연동되는 M2M 기반 스마트 팩토리 관리시스템의 설계 및 구현)

  • Park, Byoung-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • The main issues of the researches are monitoring environment such as weather or temperature variation and natural accident, and sensor gateways which have mobile device, applications for mobile health care. In this paper, we propose the SFMS(Smart Factory Management System) that can effectively monitor and manage a green smart factory area based on M2M service and smart phone with android OS platform. The proposed system is performed based on the TinyOS-based IEEE 802.15.4 protocol stack. To validate system functionality, we built sensor network environments where were equipped with four application sensors such as Temp/Hum, PIR, door, and camera sensor. We also built and tested the SFMS system to provide a novel model for event detection systems with smart phone.

Design and Implementation of Customized Protocol and Smartphone App for the All-in-One Sensor Device

  • Bang, Jong-ho;Lee, Song-Yeon;Paik, Jong-Ho
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • Social issues for environmental pollution are continuously increasing globally. Especially, Users require services to measure environmental factors in indoor and outdoor and manage related data effectively and conveniently. According to this demand, sensors that can measure environmental factors in indoor and outdoor have been developed. However, since one sensor is composed of independent module, the interface of output data from each sensor is different. To solve the problem, we propose a customized protocol for low-power short-range wireless communication between smartphone using Bluetooth and All-in-One sensor device board and analyze the performance of the proposed customized protocol by developing program for performance verification of interface with user smartphone through Bluetooth. In addition, we implement a smartphone application using proposed protocol.

Entity Authentication Scheme for Secure WEB of Things Applications (안전한 WEB of Things 응용을 위한 개체 인증 기술)

  • Park, Jiye;Kang, Namhi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.5
    • /
    • pp.394-400
    • /
    • 2013
  • WoT (Web of Things) was proposed to realize intelligent thing to thing communications using WEB standard technology. It is difficult to adapt security protocols suited for existing Internet communications into WoT directly because WoT includes LLN(Low-power, Lossy Network) and resource constrained sensor devices. Recently, IETF standard group propose to use DTLS protocol for supporting security services in WoT environments. However, DTLS protocol is not an efficient solution for supporting end to end security in WoT since it introduces complex handshaking procedures and high communication overheads. We, therefore, divide WoT environment into two areas- one is DTLS enabled area and the other is an area using lightweight security scheme in order to improve them. Then we propose a mutual authentication scheme and a session key distribution scheme for the second area. The proposed system utilizes a smart device as a mobile gateway and WoT proxy. In the proposed authentication scheme, we modify the ISO 9798 standard to reduce both communication overhead and computing time of cryptographic primitives. In addition, our scheme is able to defend against replay attacks, spoofing attacks, select plaintext/ciphertext attacks, and DoS attacks, etc.

Exploring Requirements of the Smart Textiles for Bio-Signal Measurement Based on Smart Watch User Sensibility (스마트워치 사용자감성에 기반한 생체신호측정용 스마트 텍스타일의 요구조건 탐색)

  • Jang, Eunji;Kim, Inhwan;Lee, Eu-Gene;Cho, Gilsoo
    • Science of Emotion and Sensibility
    • /
    • v.20 no.4
    • /
    • pp.89-100
    • /
    • 2017
  • Since smart devices are able to efficiently provide information without barriers of time and location, they are widely utilized with advent of the hyper-connected society. Especially, the smart devices have been developed in the form of wearable devices for mutual interaction between human and objects. Smart clothing, which embeds smart devices within clothes, measures and obtains a variety of bio-signals as it is in close contact with the human bodies. Conventional smart clothing generated wearers' discomfort because they were developed by simple attachment of electronic devices to clothes. Therefore, it is highly recommended to develop novel smart clothing based on smart textiles which integrate electronic devices as parts of textiles. As smart watches are currently the most available wearable devices in the market, smart watch users were selected in this study, for the purpose of investigating core needs of wearable smart device users based on the user experience and user's sensibility. Qualitative research was performed through semi-structured interview in order to obtain detailed answers about user sensibility based on smart watch user experience. After the in-depth interview, the user's sensibility was categorized into four aspects; functional, aesthetic, social, and empirical. Sensibility adjectives and key words were assigned to each aspect and their frequency was analyzed. It was the functional aspect of sensibility that the wearable device users require the most. The results of this study will be utilized as a fundamental data to develop the smart textiles required for the next generation of smart clothing which is attracting as a future wearable device.

Efficient Patient Information Transmission and Receiving Scheme Using Cloud Hospital IoT System (클라우드 병원 IoT 시스템을 활용한 효율적인 환자 정보 송·수신 기법)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2019
  • The medical environment, combined with IT technology, is changing the paradigm for medical services from treatment to prevention. In particular, as ICT convergence digital healthcare technology is applied to hospital medical systems, infrastructure technologies such as big data, Internet of Things, and artificial intelligence are being used in conjunction with the cloud. In particular, as medical services are used with IT devices, the quality of medical services is increasingly improving to make them easier for users to access. Medical institutions seeking to incorporate IoT services into cloud health care environment services are trying to reduce hospital operating costs and improve service quality, but have not yet been fully supported. In this paper, a patient information collection model from hospital IoT system, which has established a cloud environment, is proposed. The proposed model prevents third parties from illegally eavesdropping and interfering with patients' biometric information through IoT devices attached to the patient's body at hospitals in cloud environments that have established hospital IoT systems. The proposed model allows clinicians to analyze patients' disease information so that they can collect and treat diseases associated with their eating habits through IoT devices. The analyzed disease information minimizes hospital work to facilitate the handling of prescriptions and care according to the patient's degree of illness.

IoT data trust techniques based on auto-encoder through IoT-linked processing (오토인코더 기반의 IoT 연계 처리를 통한 IoT 데이터 신뢰 기법)

  • Yon, Yong-Ho;Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.351-357
    • /
    • 2021
  • IoT devices, which are used in various ways in distributed environments, are becoming more important in data transmitted and received from IoT devices as fields of use such as medical, environment, transportation, bio, and public places are diversified. In this paper, as a method to ensure the reliability of IoT data, an autoencoder-based IoT-linked processing technique is proposed to classify and process numerous data by various important attributes. The proposed technique uses correlation indices for each IoT data so that IoT data is grouped and processed by blockchain by characteristics for IoT linkage processing based on autoencoder. The proposed technique expands and operates into a blockchain-based n-layer structure applied to the correlation index to ensure the reliability of IoT data. In addition, the proposed technique can not only select IoT data by applying weights to IoT collection data according to the correlation index of IoT data, but also reduce the cost of verifying the integrity of IoT data in real time. The proposed technique maintains the processing cost of IoT data so that IoT data can be expanded to an n-layer structure.