• Title/Summary/Keyword: 사면 거동

Search Result 327, Processing Time 0.024 seconds

Analysis of Slope Fracturing using a Terrestrial LiDAR (지상라이다를 이용한 사면파괴 거동분석)

  • Yoo, Chang-Ho;Choi, Yun-Soo;Kim, Jae-Myeong
    • Spatial Information Research
    • /
    • v.16 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • Landslide, one of the serious natural disasters, has Incurred a large loss of human and material resources. Recently, many forecasting or alarm systems based on various kinds of measuring equipment have been developed to reduce the damage of landslide. However, only a few of these equipments are guaranteed to evaluate the safety of whole side of land slope with their accessibility to the slope. In this study, we performed some experiments to evaluate the applicability of a terrestrial LiDAR as a surveying tool to measure the displacement of a land slope surface far a slope collapsing protection system. In the experiments, we had applied a slope stability method to a land slope and then forced to this slope with a load increasing step by step. In each step, we measured the slope surface with both a total station and a terrestrial LiDAR simultaneously. As the result of Slope Fracturing analysis using all targets, the LiDAR system showed that three was 1cm RMSE on X-axis, irregularity errors on Y-axis and few errors on Z-axis compare with Total Station. As the result of Slope Fracturing analysis using continuous targets, the pattern of Slope Fracturing was different according to the location of continuous targets and we could detect a continuous change which couldn't be found using Total station. The accuracy of the LiDAR data was evaluated to be comparable to that of the total station data. We found that a LiDAR system was appropriate to measuring the behaviour of land slope. The LiDAR data can cover the whole surface of the land slope, whereas the total station data are available on a small number of targets. Moreover, we extracted more detail information about the behavior of land slope such as the volume and profile changes using the LiDAR data.

  • PDF

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

Analysis for the Behavior of Ridge-Cut Rock Slope (능선부 개착에 의해 형성된 암반사면 거동해석)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Shin, Sun-Mi;Lee, Guen-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.393-402
    • /
    • 2012
  • A behavior of ridge-cut rock slope had been monitored by installing inclinometers and regional slope movement toward rear side of cut face was detected. To delineate the governing factors of slope behavior, especially backward slip of ridge-cut slope, petrographic characteristics of rock cores obtained from four drilled boreholes had been examined. BIPS images inside boreholes had been acquired and structural characteristics of slope rock had been studied. Mechanical properties of discontinuity planes distributed in the drilled core had been measured and the shear strength of coal seam imbedded-discontinuity planes also had been obtained by performing the direct shear test. Monitoring results of slope behavior had been analyzed by comprehensibly considering both the mechanical and structural characteristics of slope rock and coal seam-imbedded discontinuity planes, and the potential governance of coal seam and clay minerals embedded in the joint plane on the regional slope behavior has been also identified.

3-Dimensional Analysis of Slope Behavior with Varying Safety Factor (안전계수 변화를 고려한 사면거동의 3차원 분석기법 연구)

  • Han, Heuisoo;Baek, Yong;Jo, Jaeho;Hwang, Changu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.19-24
    • /
    • 2010
  • Generally, slope behavior is analyzed by 2-dimensional creep model. Creep behavior shows the deformation variation as time goes by without stress increment. Convention 2-dimensional creep analysis does not have the term of stress variation, it means creep analysis could not figure out the relationship of shear strength variation according to the stress variation and displacement. The slope weight and shear strength is directly related and interlocked to the safety variation and displacement of slope, therefore, this phenomenon could be treated and analyzed as combining the hysteresis and creep, the iteration of this process will result in the slope safety. Furthermore, the combined analysis will be the slope analysis considering shear stress, displacement and shear strength with time variation. In real case, because the variation of shear stress and strength happen at the same time, they should be changed into safety factor which is function of them. This paper shows the 3-dimensional variation of unit weight of soil with hybrid analysis considering creep and hysteresis on the seepage and drainage of rainfall, futhermore variations of shear stress and strength which make the safety factor change.

Instability Analysis of Road Landfill Slope during Heavy Rainfall (호우시 도로성토사면의 사면불안정 분석)

  • Kim, Young-Muk;Park, Hyang-Keun;Chol, Mun-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.41-50
    • /
    • 2004
  • The study of seepage behavior is very important to slope stability of road landfill for heavy rainfall season. This study is done to propose more stable of road landfill based on analysis of seepage behavior and slope stability for some cases of road landfill. The selected sections of collapsed road landfill are most general case of road landfill, a case is landfill on the ground area and another case is on the slope area. The results of this study is summarized as follows. It is founded that the road landfill on the ground area is increased saturation region due to rainfall infiltration, and the seepage behavior of road landfill is solved by theory of unsaturated flow. The road landfill is more unstable due to rainfall infiltration at the slope surface, especially during heavy rainfall. The case of road landfill on the slope area is analyzed in consideration of slope surface infiltration, and it is founded that the slope instability is increased because of rainfall infiltration. The drain layer located on the original ground which made by more permeable materials could be good action of slope stability in the case of road landfill on the slope area.

  • PDF

Failure Prediction and Behavior of Cut-Slope based on Measured Data (계측결과에 의한 절토사면의 거동 및 파괴예측)

  • Jang, Seo-Yong;Han, Heui-Soo;Kim, Jong-Ryeol;Ma, Bong-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.165-175
    • /
    • 2006
  • To analyze the deformation and failure of slopes, generally, two types of model, Polynomial model and Growth model, are applied. These two models are focused on the behavior of the slope by time. Therefore, this research is more focused on predicting of slope failure than analyzing the slope behavior by time. Generally, Growth model is used to analyze the soil slope, to the contrary, Polynomial model is used for rock slope. However, 3-degree polynomial($y=ax^3+bx^2+cx+d$) is suggested to combine two models in this research. The main trait of this model is having an asymptote. The fields to adopt this model are Gosujae Danyang(soil slope) and Youngduk slope(rock slope), which are the cut-slope near national road. Data from Gosujae are shown the failure traits of soil slope, to the contrary, those of Youngduk slope are shown the traits of rock slope. From the real-time monitoring data of the slope, 3-degree polynomial is proved as excellent system to analyze the failure and behavior of slope. In case of Polynomial model, even if the order of polynomials is increased, the $R^2$ value and shape of the curve-fitted graph is almost the same.

An Analysis of the Behavior of Rock Slope with Excavation-Induced Tension Cracks Located in DongHae Highway Construction Site (개착과정에서 인장균열이 발생된 동해고속도로 건설현장 암반사면의 거동 해석)

  • 조태진;이창영;고기성
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.15-27
    • /
    • 2004
  • Sliding aspects of rock slope, where large-scaled tension cracks are induced during preliminary excavation, have been analyzed. Structure of rock mass is investigated by performing the electrical resistivity survey and the orientations and positions of discontinuities are measured from DOM-drilled core log. Geological evidence far primary failure movement has been detected and clay minerals which possess swelling properties are identified through XRD analysis. Slope stability is examined by considering the orientations of discontinuities and their trace distributions on the cut-face and neighboring natural slope surface. Both orientations and positions of failure-invoking discontinuity planes, traces of which are exposed within the anticipated sliding region, are concerned fur analyzing the preferred sliding directions. Regional sliding vectors are assessed based on the relative positions of potential sliding planes in the boreholes and the general trend of anticipated failure movement of rock slope is also investigated.

Slope Stability Analysis Considering Seepage Conditions by FEM Using Strength Reduction Technique (강도 감소법에 의한 지하수위를 고려한 FEM 사면안정해석)

  • 김영민
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.97-102
    • /
    • 2004
  • In this paper, a finite element based method far determining factor of safety of slopes which has certain advantages over conventional limit equilibrium methods is described. Particularly, the slope failure behaviour considering different seepage conditions is produced by finite element method using strength reduction technique. It is shown that both the failure mechanism and the safety factor that are analyzed by the FEM using strength reduction technique are an effective means of slope stability analysis. And the stability of a slope with rising water table and rapid drawdown are analyzed and the results are compared with the simplified Bishop Method of the Limit Equilibrium Methods.

Slope Failure Index System Based on the Behavior Characteristics : SFi-system (거동 특성에 따른 사면 파괴 지수 시스템 : SFi-system)

  • 윤운상;정의진;최재원;김정환;김원영;김춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.23-37
    • /
    • 2002
  • Failure of the cut slope is triggered by combination of internal and extemal failure factors. Internal failure factors are related to geological and geometrical conditions of slope itself, and natural and/or artificial loadings on slope can be the external failure factors. Influences of these failure factors show different intensity according to the ground condition and are controlled by behavior characters of the slope. In this study, the soil depth ratio(SR), block size ratio(BR) and rock strength are used as the criteria to divide ground condition based on behavior characteristics. Ground condition of the slope is divided into discontinuous jointed rock mass and continuos soil-like mass, highly fractured rock mass and massive rock mass by the criteria(SR and BR). The SFi-system is a rating system to determine the slope failure index(SFi) by analyzing internal and external factors based on classification of the ground condition. The results of the SFi-system application to the real cut slopes show close relationship between the SFi value and potential or dimension of the failure. Therefore, the SFi-system can be used as a useful tool to predict and analyze the characteristic of the slope failure.

The Behavior of a Cut Slope Stabilized by Use of Piles (억지말뚝으로 보강된 절개사면의 거동)

  • Hong, Won-Pyo;Han, Jung-Geun;Lee, Mun-Gu
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.111-124
    • /
    • 1995
  • On development of mountaneous or hilly area, stability of cut slope should be provided to prevent undesirable landslides. When piles are used as a countermeasure to stabilize existing landslide, stabilities for both piles and slope should be simultaneously satisfied to obtain the whole stability of the slope reinforced by piles. In order to confirm the effect of stabilizing piles on slope stabilization, it is necessary to investigate the behavior of the slope, in which the piles are installed. In this paper, first, the countermeasures used commonly to control unstable slope in Korea were summerized systematically. Nezt, the behavior of piles and slope soil was investigated by instrumentation installed into a cut slope for an apartment stabilized by a row of piles. Instrumentation could present sufficient effect of piles on slope stabilization Construction works in front of the row of piles affected the displacement of piles and slope. The construction works were divided into four stages, i.e. initial cutting stage of slope, excavation stages for retaining wall and parking space, and construction of retaining wall. As the result of research, the applicability of the proposed design method could be confirmed sufficiently.

  • PDF