• Title/Summary/Keyword: 사면활동

Search Result 192, Processing Time 0.026 seconds

Population Size Estimation of the Kaloula borealis in the Daemyung Retarding Basin (대명유수지에 서식하는 맹꽁이 Kaloula borealis 개체군 크기 추정)

  • Choi, Seo-Young;Rho, Paikho
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.684-693
    • /
    • 2016
  • Daemyung retarding basin located near the confluence floodplain of the Nakdong and Kumho River is a large spawning site for the endangered Kaloula borealis, and needs for protecting the habitat of the endangered species are increasing. However, scientific studies are rarely conducted on the population characteristics and ecological knowledge on the species in the basin. This paper aims to estimate the population size and spatial distribution of the species that inhabited at the Daemyung retarding basin, using the capture-recapture method. Also, pitfall traps were installed in each habitat types classified with micro-topographic features, slope aspects, and vegetation communities to identify the spatial distribution characteristics of the Kaloula borealis of each habitat in the retarding basin. Field survey on the species was conducted from May 2013 to October 2014, showing that the species emerged in May, became more active during July and August and started to hibernate at the end of October. Using capture-recapture method, the first survey was carried out from July to August, 2014. Ninety-eight toads were captured, marked, and released back into the site. In the second survey, 68 toads including 5 marked toads of the previous survey were captured. Based on these two-sample surveys, around 535-2,131 individual toads are estimated to inhabit the Daemyung retarding basin. Fifty-seven pitfall traps were installed in four habitat types: mounded and vegetated flatland, lowland swamps, and slope areas of both the southern and western parts of the basin in order to delineate spatial abundance of the endangered Kaloula borealis during the rainy season when the species is actively spawning. Pitfall traps at the spatially explicit array indicated that the species gradually move to the slope areas near the Daemyung stream, showing high occurrence density of the Kaloula borealis compared to the lowland swamps after the spawning season. The emergence of Kaloula borealis in the lowland swamps appeared to be comparatively higher during the spawning season. However, after the spawning season the toads species rapidly moved into the neighboring land of relatively high elevation such as the slope area towards the Dalsung protected wetlands and Daemyung River. These results are closely related to the migration patterns that toads tend to return to the sheltering sites and/or hibernating grounds after the spawning season. Also, the Kaloula borealis moved to the nearest high-level vegetated areas as the lowland swamps of their spawning grounds deteriorated with the expansion of permanent ponds due to the rise in the groundwater level.

Spatio-temporal Variations in the Dynamics and Export of Large Wood in Korean Mountain Streams (우리나라 산지계류에 있어서 유목 동태의 시.공간적 다양성과 그에 따른 유출 특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Suk Woo;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.333-343
    • /
    • 2012
  • In-stream large wood (LW) has a critical impact on the geomorphic characteristics relevant to ecosystem management and disaster prevention, yet relatively little is known about variations in its dynamics and subsequent export on the watershed-scale perspective in Korea. Here we review variations in the dynamics and subsequent export of LW as a function of stream size, which is appropriate for Korean mountain streams. In upstream channels with narrow bankfull widths and low stream discharges, a massive amount of LW, resulting from forest dynamics and hillslope processes, may persist for several decades on valley floor. These pieces, however, are eventually transported during infrequent debris flows from small tributaries, as well as peak hydrology in main-stem channels. During the transport, these pieces suffer fragmentation caused by frictions with boulders, and stream bank and bed. Although infrequent, these events can be dominant processes in the export of significant amounts of LW from upstream channel networks. In downstream channels with wide bankfull widths and high stream discharges, LW is dominantly recruited by forest dynamics and bank erosion only at locations where the channel is adjacent to mature riparian forests. With the LW pieces that are supplied from the upstream, these pieces are continuously transported downstream during rainfall events. This leads to further fragmentation of the LW pieces, which increases their transportability. With decreasing stream-bed slope, these floated LW pieces, however, can be stored and form logjams at various depositional sites, which were developed by interaction between channel forms and floodplains. These pieces may decay for decades and be subsequently transported as particulate or dissolved organic materials, resulting in the limitation of LW fluvial export from the systems. However, in Korea, such depositional sites were developed in the extremely limited streams with a large dimension and no flood history for decades, and thus it does not be expected that the reduction of LW export amount, which can be caused by the long-term storage. Our review presents a generalized view of LW processing and is relevant to ecosystem management and disaster prevention for Korean mountain streams.

Population Structure and Habitat Characteristics of Deutzia paniculata Nakai, as an Endemic Plant Species in Korea (한반도 특산식물 꼬리말발도리 개체군 구조 및 서식지 특성)

  • Jung, Ji-young;Pi, Jung-hun;Park, Jeong-geun;Jeong, Mi-jin;Kim, Eun-hye;Seo, Gang-Uk;Lee, Cheul-ho;Son, Sung-won
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.31-41
    • /
    • 2016
  • Deutzia paniculata is an endemic species to the Korean Peninsula. Despite of importance for conservation, the population structure and habitat characteristics of D. paniculata have not been determined yet. We analyzed the ecological characteristics of the species based on the literature review and field survey. Field survey was conducted on May to October 2014 during which 11 quadrats of size $15{\times}15m$ were studied in six regions. Each of the quadrats were further divided into $5{\times}5m$ small quadrats and population characteristics were recorded. The population and habitat characteristics were analyzed, including species abundance (density and coverage), demographic attributes (flowering rates and fruiting plants), vegetation (structure, species composition), light availability (transmitted light and canopy openness) and soil characteristics (temperature and humidity). We found that D. paniculata mainly distributed in Gyeongsangdo (including Taebaek in Gangwondo) along a broad elevational range of 290~959 m (mean: 493 m) above sea level. In preferred habitat the species grows within the slope range of $7^{\circ}$ and $35^{\circ}$ with the average of $16^{\circ}$. D. paniculata was generally distributed on talus deposits and low adjacent slopes. The average number of individual plants per small quadrat was 12.5 with the mean density $0.5stems\;m^{-2}$. The vegetative reproduction was frequent in D. paniculata and mean flowering rate was as low as 15%. Altogether 138 taxa were found in whole observation area with the dominant tree species mainly spring ephemerals, such as Cornus controversa (importance value: 25.5%) and Fraxinus rhynchophylla (importance value: 15.8%). Although, C. controversa usually grows on steep slopes and F. rhynchophylla mostly distributed at high-altitudes, however, both species distributed in disturbed environments and among talus deposits. Thus based on our results, we concluded that D. paniculata is a disturbance-prone species, primarily existing in habitats subjected to natural disturbances, such as floods. The species occurs less at anthropogenically disturbed sites, thus there is no apparent threat to the populations and habitat of D. paniculata.

Identification of Quaternary Faults and shallow gas pockets through high-resolution reprocessing in the East Sea, Korea (탄성파 자료 고해상도 재처리를 통한 동해해역의 제4기 단층 및 천부 가스 인지)

  • Jeong, Mi Suk;Kim, Gi Yeong;Heo, Sik;Kim, Han Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 1999
  • High-resolution images are drawn from existing seismic data which were originally obtained by Korea Ocean Research & Development Institute (KORDI) during 1994-1997 for deep seismic studies on the East Sea of Korea. These images are analyzed for mapping Quaternary faults and near-bottom gas pockets. First 12 channels are selected from shot gathers for reprocessing. The processing sequence adopted for high-resolution seismic images comprises data copy, trace editing, true amplitude recovery, common-midpoint sorting, initial muting, prestack deconvolution, bandpass filtering, stacking, highpass filtering, poststack deconvolution, f-x migration, and automatic gain control (AGC). Among these processing steps, predictive deconvolution, highpass filtering, and short window AGC are the most significant in enhancement of resolution. More than 200 Quaternanry faults are interpreted on the migrated sections in the shallow depths beneath the seafloor. Although numerous faults are found mostly at the western continental slope and boundaries of the Ulleung Basin, significant amount of the faults are also indicated within the basin. Many of these faults are believed to be formed with reactivation of basement, from geotectonic activities including volcanism, and often originated in Tertiary, indicating that the tectonic regime of the East Sea might be unstable. Existence of shallow gas pockets casts real hazardous warnings to deep-sea drillings and/or to underwater constructions such as inter-island cables and gas pipelines. On the other hand, discovery of these gas pockets heightens the interests in developing natural resources in the East Sea. Reprocessed seismic sections, however, show no typical seismic characteristics for gas hydrates such as bottom-simulating reflectors in the western continental slope and ocean floor.

  • PDF

Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application (토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용)

  • Jeong, Sueng-Won;Fukuoka, Hiroshi;Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.181-194
    • /
    • 2013
  • Landslides are known as gravitational mass movements that can carry the flow materials ranging in size from clay to boulders. The various types of landslides are differentiated by rate and depositional features. Indeed, flow characteristics are observed from very slow-moving landslides (e.g., mud slide and mud flow) to very fast-moving landslides (e.g., debris avalanches and debris flows). From a geomechanical point of view, shear-rate-dependent shear strength should be examined in landslides. This paper presents the design of advanced ring-shear apparatus to measure the undrained shear strength of debris flow materials in Korea. As updated from conventional ring-shear apparatus, this apparatus can evaluate the shear strength under different conditions of saturation, drainage and consolidation. We also briefly discussed on the ring shear apparatus for enforcing sealing and rotation control. For the materials with sands and gravels, an undrained ring-shear test was carried out simulating the undrained loading process that takes place in the pre-existing slip surface. We have observed typical evolution of shear strength that found in the literature. This paper presents the research background and expected results from the ring-shear apparatus. At high shear speed, a temporary liquefaction and grain-crushing occurred in the sliding zone may take an important role in the long-runout landslide motion. Strength in rheology can be also determined in post-failure dynamics using ring-shear apparatus and be utilized in debris flow mobility.

A Study on the Geomorphology and Activity of Jinbu Fault in Pyeongchang-gun, Gangwon Province (강원도 평창군 진부 단층의 지형 및 활동성)

  • Lee, Gwang-Ryul;Cho, Young-Dong;Kim, Dae-Sik
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.775-790
    • /
    • 2008
  • This study shows possibility of active fault, throughout analyzing distributional features of tectonic and fluvial geomorphology and mineral composition of fault fracture clay, at Jinbu fault-line system in Pyeongchang-gun, Gangwon Province. Fault-line valley was formed remarkably in the upper reaches of Odae River and upper reaches of Yeongok River according along Jinbu fault-line. Landforms show rectilineal distribution at right shore slopes of Odae River in Ganpyeong-ri, southern zone of Jinbu fault-line system, related to the tectonic processes, such as triangular facet, kernbut, kerncol and alluvial fan. Fault fracture clay zones were developed at 5 outcrops($jbf1{\sim}5$), located in kerncol. Particularly, jbf1 fault outcrop, developed at granite saprolite, has obvious fault plane and fault clay composed of illite and laumontite. The Jinbu Fault-line along jbf4-2-3-5 may be formed by regional compressive stress, and jbf1 fault may be suggested a tributary fault of the Jinbu fault-line formed before the late Pleistocene. The vertical displacement of the east and west blocks of the Jinbu Fault-line is estimated in $0.024{\sim}0.027m/ka$.

Development of a Mountainous Area Monitoring System based on IoT Technology (IoT 기술 기반의 산악지 모니터링 시스템 개발)

  • Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.437-446
    • /
    • 2017
  • 70 percent of Korea's territory is covered with mountains, whose difficult conditions can cause damage to facilities. Recently, the demand for facilities related to outdoor activities including monorails has been on the rise, and such facilities are much more likely to become damaged. For this reason, a monitoring system applying IoT to mountainous areas was developed and its applicability is evaluated in this study. The current status of the existing mountainous facilities and monitoring systems were reviewed, and the current wired monitoring technology was analyzed. A scenario for IoT-based monitoring was developed, and then sensor nodes were developed, which include an RF-communication module and interface, power-supply and solar-cell. A testbed was set up at K University. The same data was collected by the wireless system as had been collected by the wired one. The study findings are as follows. Firstly, by using the wireless system, it is estimated that the construction duration can be reduced by about 25 percent, while the construction costs can be reduced by about 3~52 percent. Secondly, the safety of the construction workers can be improved by making the working conditions less dangerous, such as by eliminating the need to transport cables.

Soil Moisture Modelling at the Topsoil of a Hillslope in the Gwangneung National Arboretum Using a Transfer Function (전이함수를 통한 광릉 산림 유역의 토양수분 모델링)

  • Choi, Kyung-Moon;Kim, Sang-Hyun;Son, Mi-Na;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.2
    • /
    • pp.35-46
    • /
    • 2008
  • Soil moisture is one of the important components in hydrological processes and also controls the subsurface flow mechanism at a hillslope scale. In this study, time series of soil moisture were measured at a hillslope located in Gwangneung National Arboretum, Korea using a multiplex Time Domain Reflectometry(TDR) system measuring soil moisture with bi-hour interval. The Box-Jenkins transfer function and noise model was used to estimate spatial distributions of soil moisture histories between May and September, 2007. Rainfall was used as an input parameter and soil moisture at 10 cm depth was used as an output parameter in the model. The modeling process consisted of a series of procedures(e.g., data pretreatment, model identification, parameter estimation, and diagnostic checking of selected models), and the relationship between soil moisture and rainfall was assessed. The results indicated that the patterns of soil moisture at different locations and slopes along the hillslope were similar with those of rainfall during the measurment period. However, the spatial distribution of soil moisture was not associated with the slope of the monitored location. This implies that the variability of the soil moisture was determined more by rainfall than by the slope of the site. Due to the influence of vegetation activity on soil moisture flow in spring, the soil moisture prediction in spring showed higher variability and complexity than that in early autumn did. This indicates that vegetation activity is an important factor explaining the patterns of soil moisture for an upland forested hillslope.

Petrology of the Volcanic Rocks in the Paekrogdam Crater area, Mt. Halla, Jeju Island (제주도 한라산 백록담 분화구 일대 화산암류의 암석학적 연구)

  • 고정선;윤성효;강순석
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • The Paekrogdam summit crater area, Mt. Halla, Jeju Island, Korea, composed of Paekrogdam trachyte, Paekrogdam trachybasalt, and Manseidongsan conglomerate in ascending order. Joint systems show concentric and radial patterns around the summit crate wall. The Paekrogdam crater is a summit crater lake which erupted the tuffs, scorias and lava flows of Paekrogdam trachybasalt after the emplaceent of Paekrogdam trachyte dome. SiO$_2$ contents of mafic and felsic lavas are respectively, 48.0∼53.7 wt.% and 60.7∼67.4 wt.%, reflecting bimodal volcanism. And lavas with SiO$_2$ between 53.7 wt.% and 60.7 wt.% are not found. According to TAS diagram and K$_2$O-Na$_2$O diagram, the volcanic rocks belong to the normal alkaline rock series of alkali basalt-trachybasalt-basaltic trachyandesite and trachyte association. Oxide vs. MgO diagrams represent that the mafic lavas fractionated with crystallization of olivine, clinopyroxene, magnetite and ilmenite and felsic trachyte of plagioclase and apatite. The characteristics of trace elements and REEs shows that primary magma for the trachybasalt magma would have been derived from partial melting of garnet peridotite mantle. In the discrimination diagrams, the volcanic rocks are plotted at the region of within plate basalt (WPB).

Shear Resisting Effects of Protruded Nails by Pressure Grouting (가압식 돌기네일의 전단저항 효과)

  • Hong, Cheorhwa;Lee, Sangduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.13-20
    • /
    • 2017
  • Soil nailing is ground reinforcement method using the shear strength of ground and the pullout shear resistance force of nail. It is mainly used for reinforcement of cut slopes, earth retaining structures and retaining walls, etc. It may be designed considering the pullout resistance of nail in the case of earth retaining structure and retaining wall, but it should be designed considering not only pullout resistance but also shear and bending resistance in the case of slope. However, conservative designs considering only pullout resistance are being done and most of the studies are about increasing pullout resistance by improving of material, shape and construction method of nail. Actually, Shear bending deformations occur centering on the active surface in ground reinforced with the nail. The grout with relatively low strength is destroyed and separated from the reinforcing material. As a result, the ground is collapsed while reducing the frictional resistance rapidly. Therefore, it is necessary to develop the method to increase the shear resistance while preventing separation of nail and grout body. In this study, an experimental study was conducted on new soil nailing method which can increase shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar.