Spatio-temporal Variations in the Dynamics and Export of Large Wood in Korean Mountain Streams

우리나라 산지계류에 있어서 유목 동태의 시.공간적 다양성과 그에 따른 유출 특성

  • Seo, Jung Il (College of Earth, Ocean, and Atmospheric Sciences, Oregon State University) ;
  • Chun, Kun Woo (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Suk Woo (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Im, Sangjun (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 서정일 (오리건주립대학 지구.해양.대기과학대학) ;
  • 전근우 (강원대학교 산림환경과학대학) ;
  • 김석우 (강원대학교 산림환경과학대학) ;
  • 임상준 (서울대학교 농업생명과학대학)
  • Published : 2012.09.30

Abstract

In-stream large wood (LW) has a critical impact on the geomorphic characteristics relevant to ecosystem management and disaster prevention, yet relatively little is known about variations in its dynamics and subsequent export on the watershed-scale perspective in Korea. Here we review variations in the dynamics and subsequent export of LW as a function of stream size, which is appropriate for Korean mountain streams. In upstream channels with narrow bankfull widths and low stream discharges, a massive amount of LW, resulting from forest dynamics and hillslope processes, may persist for several decades on valley floor. These pieces, however, are eventually transported during infrequent debris flows from small tributaries, as well as peak hydrology in main-stem channels. During the transport, these pieces suffer fragmentation caused by frictions with boulders, and stream bank and bed. Although infrequent, these events can be dominant processes in the export of significant amounts of LW from upstream channel networks. In downstream channels with wide bankfull widths and high stream discharges, LW is dominantly recruited by forest dynamics and bank erosion only at locations where the channel is adjacent to mature riparian forests. With the LW pieces that are supplied from the upstream, these pieces are continuously transported downstream during rainfall events. This leads to further fragmentation of the LW pieces, which increases their transportability. With decreasing stream-bed slope, these floated LW pieces, however, can be stored and form logjams at various depositional sites, which were developed by interaction between channel forms and floodplains. These pieces may decay for decades and be subsequently transported as particulate or dissolved organic materials, resulting in the limitation of LW fluvial export from the systems. However, in Korea, such depositional sites were developed in the extremely limited streams with a large dimension and no flood history for decades, and thus it does not be expected that the reduction of LW export amount, which can be caused by the long-term storage. Our review presents a generalized view of LW processing and is relevant to ecosystem management and disaster prevention for Korean mountain streams.

유목은 산림유역의 생태적 환경과 인간 생활권에 막대한 영향을 미칠 수 있는 요인임에도 불구하고 우리나라에서는 유역단위 관점에서의 유목 동태와 유출 특성에 대한 연구가 부족한 실정이다. 따라서 이 논문에서는 우리나라 산림유역에서 산지계류의 규모에 따른 유목 동태의 시 공간적 다양성과 유출 특성을 고찰하였다. 소규모의 상류 산지계류에서는 강풍, 산불, 병충해와 피압에 의한 고사 등의 산림동태와 산사태 등의 사면활동에 의해 유목이 생산된다. 생산된 유목은 좁은 계폭과 적은 유량에 의해 계류 내에 장기간 체류하게 된다. 그러나 산사태에 의한 토석류와 홍수시에 증가된 유량으로 인해 많은 양의 유목이 일시적으로 하류로 유출되며, 이 과정에서 유목은 토석이나 계상 및 계안과의 마찰로 인해 파쇄 된다. 이러한 현상은 대규모의 집중호우 시 이외에는 거의 발생하지 않지만, 상류 산지계류에 분포하고 있는 유목을 유출시키는 주요 원인이다. 한편, 하류 산지계류의 경우 유목은 성숙한 임분의 수변림이 형성되어 있는 범람원과 접하고 있는 계류구간에서 산림동태와 계안붕괴로 인해 주로 생산된다. 이렇게 생산된 유목은 상류 산지계류에서 유입된 유목과 함께 강우발생 시 형성되는 넓은 계폭과 깊은 수심에 의해 하류로 이동하게 되며, 이 과정에서 계안과의 마찰에 의한 파쇄작용으로 유목의 크기가 더욱 작아져 이동능력이 극대화된다. 그러나 계상경사가 완만해 지는 구간에 이르러서는 계류형상과 범람원과의 상호작용에 의해 사행 유로나 2차 유로 등의 퇴적공간이 발달하기 시작한다. 특히 계류의 규모가 크고 장기간 홍수이력이 없는 산지계류의 경우 이러한 퇴적공간이 더욱 두드러지게 발달하여 유목이 군적으로 체류하게 되며, 이는 결국 산림유역 내에 유목을 장기간 체류시켜 유목 유출량을 저감시킨다. 그러나 우리나라의 산지계류는 대부분 유로연장이 짧고 홍수발생이 잦은 편이므로 유목을 장기간 체류시킬 수 있는 체류공간이 적으며, 결국 많은 양의 유목이 하류로 유출된다. 이 연구의 결과는 산지계류의 수리학 지형학적 환경에 따른 생태학적 안정과 잠재적인 재해가능성의 저감을 위한 유역관리에 유용하게 활용될 것이다.

Keywords

References

  1. 동해안산불피해지 공동조사단. 2000a. 산불피해지의 건전한 자연생태계 복원 및 항구적인 산림복구계획 수립을 위한 동해안 산불지역 정밀조사 보고서 I. 동해안산 불피해지 공동조사단. pp. 533.
  2. 동해안산불피해지 공동조사단. 2000b. 산불피해지의 건전한 자연생태계 복원 및 항구적인 산림복구계획 수립을 위한 동해안 산불지역 정밀조사 보고서 II. 동해안산 불피해지 공동조사단. pp. 311.
  3. 서정일, 전근우, 김민식, 염규진, 이진호, 木村正信. 2011. 산지계류에 있어서 유목의 종단적 분포특성. 한국임학회지 100: 52-61.
  4. 안영상, 조희두, 서정일, 김석우, 전근우. 2003. 하도 내 달뿌리풀 서식에 대한 바닥막이의 영향 분석. 한국임학회지 92: 168-175.
  5. 전근우, 김민식, 박완근, 江崎次夫. 1997. 산지급류소하천에 있어서 하상미지형과 유목 특성. 한국임학회지 86: 69-79.
  6. 전근우, 서문원, 안영상, 서정일, 김석우, 양동윤, 新谷融. 2002. 저댐군의 수리모형실험. 2002년도 한국임학회 학술연구 발표논문집: 152-154.
  7. 전근우, 김석우, 서정일, 中村太士, 新谷融. 2004. 저댐군의 수리모형실험(III): 토사유입이 하상변동에 미치는 영향. 2004년도 한국임학회 학술연구 발표논문집: 355-357.
  8. 전근우, 임영협, 김민식, 염규진, 김윤진, 이진호, 남수연. 2008. 수리모형실험에 의한 원통형 슬릿트댐의 유목포착 효과. 2008년도 한국임학회 정기학술연구 발표논문집: 283-286.
  9. 전근우, 김석우, 서정일, 장수진. 2009. 일본 홋카이도 (北海道) 지역의 저댐군공법. 산림공학기술 7: 142-157.
  10. 행정자치부 국립방재연구소. 2002. 2002 태풍 루사 피해 현장조사 보고서. pp. 259.
  11. 獨立行政法人防災科學技術硏究所. 2002. MPレダ雨量に よる土砂災害危域の推定(I). http://lapsus.bosai.go.jp/lapsus/ dosha_map/sgm1.htm.
  12. 東三郞. 2000. 河川生態系の再生に關する硏究. 森林空間硏究所. pp. 45.
  13. 砂防學會. 2000. 水邊域管理 : その理論.技術と實踐. pp.
  14. 全槿雨, 林榮浹, 金玟植, 車斗松, 江崎次夫. 2008. 韓國に おけるスリット砂防ダム導入の課題. 平成20年度砂防學會 硏究發表會槪要集: 500-501.
  15. Abbe, T.B. and Montgomery, D.R. 2003. Patterns and processes of wood debris accumulation in the Queets river basin, Washington. Geomorphology 51: 81-107. 16 Anderson, M.G. and Burt, T.P. 1990. Process studies in hillslope hydrology: an overview. pp. 1-8. In: M.G. Anderson and T.P. Burt, ed. Process Studies in Hillslope Hydrology. John Wiley & Sons Ltd. Chichester, U.K.
  16. Anderson, M.G. and Burt, T.P. 1990. Process studies in hillslope hydrology: an overview. pp. 1-8. In: M.G. Anderson and T.P. Burt, ed. Process Studies in Hillslope Hydrology. John Wiley & Sons Ltd. Chichester, U.K.
  17. Anderson, N.H., Sedell, J.R., Roberts, L.M. and Triska, F.J. 1978. The role of aquatic macroinvertebrates in processing of wood debris in coniferous forest streams. American Midland Naturalist 100: 64-82. https://doi.org/10.2307/2424778
  18. Asaeda, T., Gomes, P.I.A. and Takeda, E. 2009. Spatial and temporal tree colonization in a midstream sediment bar and the mechanisms governing tree mortality during a flood event. River Research and Applications 26: 960-976. DOI 10.1002/rra.1313.
  19. Benda, L.E. and Cundy, T.W. 1990. Predicting deposition of debris flows in mountain channels. Canadian Geotechnical Journal 27: 409-417. https://doi.org/10.1139/t90-057
  20. Benda, L., Miller, D., Sias, J., Martin, D., Bilby, R., Veldhuisen, C. and Dunne, T. 2003. Wood recruitment processes and wood budgeting. pp. 49-73. In: S.V. Gregory, K.L. Boyer and A.M. Gurnell, ed. The Ecology and Management of Wood in World Rivers (American Fisheries Society Symposium 37). American Fisheries Society. Bethesda, MD, U.S.A.
  21. Bilby, R.E. 2003. Decomposition and nutrient dynamics of wood in streams and rivers. pp. 135-147. In S.V. Gregory, K.L. Boyer and A.M. Gurnell, ed. The Ecology and Management of Wood in World Rivers (American Fisheries Society Symposium 37). American Fisheries Society. Bethesda, MD, U.S.A.
  22. Bilby, R.E. and Ward, J.W. 1991. Characteristics and function of large woody debris in streams draining old-growth, clear-cut, and second-growth forests in southwestern Washington. Canadian Journal of Fisheries and Aquatic Sciences 48: 2499-2508. https://doi.org/10.1139/f91-291
  23. Bisson, P.A. and Bilby, R.E. 1998. Organic matter and trophic dynamics. pp. 373-398. In: R.J. Naiman and R.E. Bilby, ed. River Ecology and Management, Springer-Verlag. New York, NY, U.S.A.
  24. Braudrick, C.A. and Grant, G.E. 2000. When do logs move in rivers? Water Resources Research 36: 571-583. https://doi.org/10.1029/1999WR900290
  25. Braudrick, C.A. and Grant, G.E. 2001. Transport and deposition of large woody debris in streams: a flume experiment. Geomorphology 41: 263-283. https://doi.org/10.1016/S0169-555X(01)00058-7
  26. Carmona, M.R., Armesto, J.J., Aravena, J.C. and Perez, C.A. 2002. Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile. Forest Ecology and Management 164: 265-275. https://doi.org/10.1016/S0378-1127(01)00602-8
  27. Comiti, F., Andreoli, A., Lenzi, M.A. and Mao, L. 2006. Spatial density and characteristics of woody debris in five mountain rivers of the Dolomites (Italian Alps). Geomorphology 78: 44-63. https://doi.org/10.1016/j.geomorph.2006.01.021
  28. Czarnomski, N.M., Dreher, D.M., Snyder, K.U. Jones, J.A. and Swanson, F.J. 2008. Dynamics of wood in stream networks of the western Cascades Range, Oregon. Canadian Journal of Forest Research 38: 2236-2248. https://doi.org/10.1139/X08-068
  29. Flebbe, P.A. and Dolloff, C.A. 1995. Trout use of woody debris and habitat in Appalachian wilderness streams of North Carolina. North American Journal of Fisheries Management 15: 579-590. https://doi.org/10.1577/1548-8675(1995)015<0579:TUOWDA>2.3.CO;2
  30. Fremier, A.K., Seo, J.I. and Nakamura, F. 2010. Watershed controls on the export of large wood from stream corridors. Geomorphology 117: 33-43. DOI 10.1016/j.geomorph. 2009.11.003.
  31. Friedman, J.M. and Auble, G.T. 1999. Mortality of riparian box elder from sediment mobilization and extended inundation. Regulated Rivers: Research and Management 15: 463-476. https://doi.org/10.1002/(SICI)1099-1646(199909/10)15:5<463::AID-RRR559>3.0.CO;2-Z
  32. Gurnell, A.M., Piégay, H., Swanson, F.J. and Gregory, S.V. 2002. Large wood and fluvial processes. Freshwater Biology 47: 601-619. https://doi.org/10.1046/j.1365-2427.2002.00916.x
  33. Harmon, M.E., Franklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack, K. Jr. and Cummins, K.W. 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133-302.
  34. Hassan, M.A., Hogan, D.L., Bird, S.A., May, C.L., Gomi, T. and Campbell, D. 2005. Spatial and temporal dynamics of wood in headwater streams of the Pacific Northwest. Journal of the American Water Resources Association 41: 899-919.
  35. Hyatt, T.L. and Naiman, R.J. 2001. The residence time of large woody debris in the Queets River, Washington, USA. Ecological Applications 11: 191-202. https://doi.org/10.1890/1051-0761(2001)011[0191:TRTOLW]2.0.CO;2
  36. Inoue, M. and Nakano, S. 1998. Effects of woody debris on the habitat of juvenile masu salmon (Oncorhynchus masou) in northern Japanese streams. Freshwater Biology 40: 1-16. https://doi.org/10.1046/j.1365-2427.1998.00346.x
  37. Johnson, S.L., Swanson, F.J., Grant, G.E. and Wondzell, S.M. 2000. Riparian forest disturbances by a mountain flood: the influence of floated wood. Hydrological Processes 14: 3031-3050. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<3031::AID-HYP133>3.0.CO;2-6
  38. Keller, E.A. and Swanson, F.J. 1979. Effects of large organic material on channel form and fluvial processes. Earth Surface Processes and Landforms 4: 361-380. https://doi.org/10.1002/esp.3290040406
  39. Knighton, A.D. 1999. Downstream variation in stream power. Geomorphology 29: 293-306. https://doi.org/10.1016/S0169-555X(99)00015-X
  40. Krauss, K.W., Doyle, T.W., Twilley, R.R., Smith III, T.J., Whelan, K.R.T. and Sullivan, J.K. 2005. Woody debris in the mangrove forests of South Florida. Biotropica 37: 9-15. https://doi.org/10.1111/j.1744-7429.2005.03058.x
  41. Latterell, J.J. and Naiman, R.J. 2007. Sources and dynamics of large logs in a temperate floodplain river. Ecological Applications 17: 1127-1141. https://doi.org/10.1890/06-0963
  42. Lecce, S.A. 1997. Nonlinear downstream changes in stream power on Wisconsin's Blue River. Annals of the Association of American Geographers 87: 471-486. https://doi.org/10.1111/1467-8306.00064
  43. Lienkaemper, G.W. and Swanson, F.J. 1987. Dynamics of large woody debris in streams in old-growth Douglas-fir forests. Canadian Journal of Forest Research 17: 150-156. https://doi.org/10.1139/x87-027
  44. Magilligan, F.J. 1992. Thresholds and the spatial variability of flood power during extreme floods. Geomorphology 5: 373-390. https://doi.org/10.1016/0169-555X(92)90014-F
  45. Marcus, W.A., Marston, R.A., Colvard, C.R. Jr. and Gray, R.D. 2002. Mapping the spatial and temporal distributions of woody debris in streams of the Greater Yellowstone Ecosystem, USA. Geomorphology 44: 323-335. https://doi.org/10.1016/S0169-555X(01)00181-7
  46. Martin, D.J. and Benda, L.E. 2001. Patterns of instream wood recruitment and transport at the watershed scale. Transactions of the American Fisheries Society 130: 940-958 https://doi.org/10.1577/1548-8659(2001)130<0940:POIWRA>2.0.CO;2
  47. May, C.L. and Gresswell, R.E. 2003. Large wood recruitment and redistribution in headwater streams in the southern Oregon Coast Range, U.S.A. Canadian Journal of Forest Research 33: 1352-1362. https://doi.org/10.1139/x03-023
  48. Meyer, G.A. and Wells, S.G. 1997. Fire-related sedimentation events on alluvial fans, Yellowstone National Park, U.S.A. Journal of Sedimentary Research 67: 776-791.
  49. Montgomery, D.R., Collins, B.D., Buffington, J.M. and Abbe, T.B. 2003. Geomorphic effects of wood in rivers. pp. 21-47. In: S.V. Gregory, K.L. Boyer and A.M. Gurnell, ed. The Ecology and Management of Wood in World Rivers (American Fisheries Society Symposium 37). American Fisheries Society. Bethesda, MD, U.S.A.
  50. Mossop, B. and Bradford, J. 2004. Importance of large woody debris for juvenile Chinook salmon habitat in small boreal forest streams in the upper Yukon River basin, Canada. Canadian Journal of Forest Research 34: 1955-1966. https://doi.org/10.1139/x04-066
  51. Moulin, B. and Piegay, H. 2004. Characteristics and temporal variability of large woody debris trapped in a reservoir on the River Rhone (Rhone): implications for river basin management. River Research and Applications 20: 79-97. https://doi.org/10.1002/rra.724
  52. Nagayama, S. and Nakamura, F. 2010. Fish habitat rehabilitation using wood in the world. Landscape and Ecological Engineering 6: 289-305. https://doi.org/10.1007/s11355-009-0092-5
  53. Naiman, R.J., Melillo, J.M., Lock, M.A., Ford, T.E. and Reice, S.R. 1987. Longitudinal patterns of ecosystem processes and community structure in a subarctic river continuum. Ecology 68: 1139-1156. https://doi.org/10.2307/1939199
  54. Naiman, R.J., Fetherston, K.L., McKay, S.J. and Chen, J. 1998. Riparian forests. pp. 289-323. In: R.J. Naiman and R.E. Bilby, ed. River Ecology and Management. Springer, New York, U.S.A.
  55. Nakamura, F. and Kikuchi, S. 1996. Some methodological developments in the analysis of sediment transport processes using age distribution of floodplain deposits. Geomorphology 15: 139-145.
  56. Nakamura, F. and Swanson, F.J. 1993. Effects of coarse woody debris on morphology and sediment storage of a mountain stream system in western Oregon. Earth Surface Processes and Landforms 18: 43-61. https://doi.org/10.1002/esp.3290180104
  57. Nakamura, F. and Swanson, F.J. 1994. Distribution of coarse woody debris in a mountain stream, western Cascade Range, Oregon. Canadian Journal of Forest Research 24: 2395-2403. https://doi.org/10.1139/x94-309
  58. Nakamura, F. and Swanson, F.J. 2003. Dynamics of wood in rivers in the context of ecological disturbance. pp. 279-297, In: S.V. Gregory, K.L. Boyer and A.M. Gurnell, ed. The Ecology and Management of Wood in World Rivers (American Fisheries Society Symposium 37). American Fisheries Society. Bethesda, MD, U.S.A.
  59. Nakamura, F., Swanson, F.J. and Wondzell, S.M. 2000. Disturbance regimes of stream and riparian systems: a disturbance-cascade perspective. Hydrological Processes 14: 2849-2860. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2849::AID-HYP123>3.0.CO;2-X
  60. Nakamura, F., Shin, N. and Inahara, S. 2007. Shifting mosaic in maintaining diversity of floodplain tree species in the northern temperate zone of Japan. Forest Ecology and Management 241: 28-38. https://doi.org/10.1016/j.foreco.2006.12.022
  61. Nakano, D., Nagayama, S., Kawaguchi, Y. and Nakamura, F. 2008. River restoration for macroinvertebrate communities in lowland rivers: insights from restorations of the Shibetsu River, north Japan. Landscape and Ecological Engineering 4: 63-68. https://doi.org/10.1007/s11355-008-0038-3
  62. Piégay, H. 2003. Dynamics of wood in large rivers. pp. 109-133. In: S.V. Gregory, K.L. Boyer and A.M. Gurnell, ed. The Ecology and Management of Wood in World Rivers (American Fisheries Society Symposium 37). American Fisheries Society. Bethesda, MD, U.S.A.
  63. Polit, J.I. and Brown, S. 1996. Mass and nutrient content of dead wood in a central Illinois floodplain forest. Wetlands 16: 488-494. https://doi.org/10.1007/BF03161338
  64. Reeves, G.H., Benda, L.E., Burnett, K.M., Bisson, P.A. and Sedell, J.R. 1995. A disturbance-based ecosystem approach to maintaining and restoring freshwater habitats of evolutionarily significant units of anadromous salmonids in the Pacific Northwest. pp. 334-349. In: J. Nielsen, ed. Evolution and the Aquatic Ecosystem, American Fisheries Society. Bethesda, MD, U.S.A.
  65. Reinfields, I., Cohen, T., Batten, P. and Brierly, G.J. 2004. Assessment of downstream trends in channel gradient, total, and specific stream power: a GIS approach. Geomorphology 60: 403-416. https://doi.org/10.1016/j.geomorph.2003.10.003
  66. Richardson, J.S., Bilby, R.E. and Bondar, C.A. 2005. Organic matter dynamics in small streams of the Pacific Northwest. Journal of the American Water Resources Association 41: 921-934.
  67. Robertson, A.I. and Daniel, P.A. 1989. Decomposition and the annual flux of detritus from fallen timber in tropical mangrove forests. Limnology and Oceanography 34: 640-646. https://doi.org/10.4319/lo.1989.34.3.0640
  68. Seo, J.I. and Nakamura, F. 2009. Scale-dependent controls upon the fluvial export of large wood from river catchments. Earth Surface Processes and Landforms 34: 786-800. DOI 10.1002/esp.1765.
  69. Seo, J.I., Nakamura, F., Nakano, D., Ichiyanagi, H. and Chun, K.W. 2008. Factors controlling the fluvial export of large woody debris, and its contribution to organic carbon budgets at watershed scales. Water Resources Research 44:W04428. DOI 10.1029/2007WR006453.
  70. Seo, J.I., Nakamura, F. and Chun, K.W. 2010. Dynamics of large wood at the watershed scale: a perspective on current research limits and future directions. Landscape and Ecological Engineering 6: 271-287. DOI 10.1007/ s11355-010-0106-3.
  71. Seo, J.I., Nakamura, F., Akasaka, T., Ichiyanagi, H. and Chun, K.W. 2012. Large wood export regulated by the pattern and intensity of precipitation along a latitudinal gradient in the Japanese archipelago. Water Resources Research 48:W03510. DOI 10.1029/2011WR010880.
  72. Swanson, F.J. 1981. Fire and geomorphic processes. pp. 401-420. In: Proceedings of the Conference on Fire Regimes and Ecosystem Properties. USDA Forest Service Publication. Honolulu, Hawaii, U.S.A.
  73. Swanson, F.J. and Lienkaemper, G.W. 1978. Physical consequences of large organic debris in Pacific Northwest streams. General Technical Report PNW-69: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, U.S.A.
  74. Wipfli, M.S., Richardson, J.S. and Naiman, R.J. 2007. Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. Journal of the American Water Resources Association 43: 72-85. https://doi.org/10.1111/j.1752-1688.2007.00007.x
  75. Wohl, E. and Jaeger, K. 2009. A conceptual model for the longitudinal distribution of wood in mountain streams. Earth Surface Processes and Landforms 34: 329-344. DOI 10.1002/esp.1722.