Proceedings of the Korean Society of Computer Information Conference
/
2020.01a
/
pp.255-256
/
2020
생산 현장에서 발생되는 다양한 형태의 데이터는 스마트한 제조관리를 가능하게 하는 원동력으로 이를 효율적으로 저장하고 처리, 분석하는 일련의 과정이 4차 산업혁명 기반의 제조혁신에 능동적으로 대응하기 위한 핵심요소로서, 이와 관련한 다양한 연구들이 활발히 이루어지고 있다. 특히, 제조데이터 분석이라는 영역은 단순하게 기존의 데이터를 통계적인 접근 수단으로만 보는 것이 아니라 다양한 산업별 업종 도메인의 특성에 기반하여 빅데이터 분석과 기계학습 등의 인공지능 모델로 발전하고 있다. 본 논문에서는 다양한 산업별 제조현장을 이해하는 도메인 경험 및 특성을 고려하여 데이터를 효과적으로 저장, 처리, 분석할 수 있는 클라우드 형태의 빅데이터 시스템을 제안한다.
인터넷의 활성화 및 모바일 서비스의 등장으로 빅데이터 시대를 맞이하게 되었다. 이전에는 저장 및 처리할 수 없었던 영역. 이제는 새로운 기술의 등장과 분석을 통한 가치 창출의 가능성으로 빅데이터는 IT 업계의 최대 화두가 되어 가고 있다. 이러한 빅데이터를 바라보는 시각은 크게 기술적 관점과 분석적 관점으로 나뉘고 있다. 특히 기술적 관점에서 바라보는 빅데이터는 하둡을 표준으로 하는 오픈소스 분석 플랫폼의 대두가 고무적이다. 누구나가 대용량의 확장 가능한 시스템을 운영할 수 있는 기회가 온 것이다. 본 고에서는 빅데이터의 그 태생적 특징을 살펴보고, 비교적 저렴한 비용의 플랫폼 환경 구축을 위해 오픈소스 하둡이 널리 활용되고 있는 이유에 대해 알아본다. 또한 하둡의 용도와 어떠한 종류의 데이터 분석을 위해 사용되어지고 있는지, 그리고 하둡의 구성 및 하둡 생태계를 이루고 있는 요소들이 무엇인지 살펴본다. 끝으로 빅데이터를 활용하기 위한 6단계 절차와 이에 발맞춰 하둡 플랫폼을 어떻게 효율적으로 활용할 지에 대해 그 방법을 모색해 보고자 한다.
As the need to establish a big data system for rapid provision of big data and efficient management of resources has emerged due to rapid entry into the hyper-connected intelligence information society, public institutions are pushing to establish a big data system. Therefore, this study analyzed and combined the success factors of big data-related studies and the specific aspects of big data in public institutions based on the measurement of environmental factors for establishing an integrated information system for higher education institutions. In addition, 19 measurement items reflecting big data characteristics were derived from big data experts using brainstorming and Delphi methods, and a plan to successfully apply them to public institutions that want to build big data systems was proposed. We hope that this research results will be used as a foundation for the successful establishment of big data systems in public institutions.
In this paper, we investigate and analyze big data platform published at home and abroad. The results had a problem with personal information security on each platform. In particular, there was a vulnerability in the encryption of personal information stored in big data representative of HBase NoSQL DB that is commonly used for big data platform. However, data encryption and decryption cause the system load. In this paper, we propose a method of encryption with HBase, encryption and decryption systems, and methods for applying the personal information management system (PMIS) for each step of the way and big data platform to reduce the load on the network to communicate. And we propose a new big data platform that reflects this. Therefore, the proposed Big Data platform will greatly contribute to the activation of Big Data used to obtain personal information security and system performance efficiency.
Journal of the Korean Data and Information Science Society
/
v.24
no.5
/
pp.975-987
/
2013
The Hadoop system was developed by the Apache foundation based on GFS and MapReduce technologies of Google. Many modern systems for managing and processing the big data have been developing based on the Hadoop because the Hadoop was designed for scalability and distributed computing. The R software has been considered as a well-suited analytic tool in the Hadoop based systems because the R is flexible to other languages and has many libraries for complex analyses. We introduced Rhipe which is a R package supporting MapReduce programming easily under the Hadoop system, and implemented a MapReduce program using Rhipe for multiple regression especially. In addition, we compared the computing speeds of our program with the other packages (ff and bigmemory) for processing the large data. The simulation results showed that our program was more fast than ff and bigmemory as the size of data increases.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.309-309
/
2018
기후변화에 따른 강우의 규모와 발생빈도 증가로 농촌유역의 홍수 피해는 지속적으로 증가하고 있다. 하지만 우리나라의 홍수 피해 저감 대책은 도시지역의 대하천 주변으로 집중되어있으며, 소하천 및 농촌유역의 홍수 피해 저감에 대한 관리와 투자 노력은 부족한 실정이다. 특히, 최근 들어 갑작스런 집중호우 등으로 인한 농촌유역 돌발홍수 피해 사례가 증가하고 있으며, 이에 대응하기 위해서는 홍수 발생 등을 신속하게 파악하기 위한 돌발홍수 예경보 시스템 개발이 필요하다. 한편, 최근 산업의 혁신과 생산성 향상을 위한 새로운 패러다임으로 4차 산업혁명이 대두되고 있으며, 빅데이터와 인공지능 (Artificial Intelligence, AI)을 비롯하여 사물인터넷 (Internet of Things, IoT), 드론, 슈퍼컴퓨팅 등의 이른바 4차 산업혁명 기술을 활용한 연구가 수행되고 있다. 본 연구에서는 기후변화에 따른 농촌유역 홍수 피해를 저감하고 또한 사전에 대비하기 위해 빅데이터와 인공지능 등 4차 산업혁명 기술을 적용한 농촌유역 돌발홍수 예경보 시스템을 개발하고 그 적용성을 평가하고자 한다. 우선, 농촌유역의 홍수와 관련된 빅데이터 (기상 자료, 수문 자료, 기후변화 자료, 농업용 수리구조물 자료 등)를 토대로 정형 빅데이터와 비정형 빅데이터를 구분 추출하고 이를 연계 해석할 수 있는 시스템을 개발하였다. 추출한 정형 및 비정형 빅데이터를 활용하여 딥러닝을 기반으로 농촌유역의 홍수를 예측하고 홍수 예경보 기준에 따른 평가를 수행할 수 있는 시스템을 개발하였다. 과거 강우사상을 홍수 예경보 시스템에 적용하여 홍수 모의 결과를 도출하였으며, 재해연보 등과 비교 분석하여 시스템의 적용성을 분석하였다.
국제적으로 지속적인 이슈가 되고 있는 에너지 절감에 대한 대책으로 다양한 에너지 절감 기술들이 연구 개발되고 있다. 특히 전체 에너지 사용량의 약 20%이상을 차지하는 건물(가정/상업/공공)부문에서는 에너지 진단 및 분석을 수행하기 위해 건물 에너지 관리 시스템(BEMS: Building Energy Management System)과 건물 자동화 시스템(BAS: Building Automation System) 그리고 다양한 환경정보들을 수집하여 활용한다. 하지만 기존 분석 방식은 결과의 신뢰성에 최소한의 영향을 주면서 데이터 관리 효율을 높이는 방법에 초점을 맞춰 연구가 진행되었으며, 이를 위해 기존에 수집된 데이터를 압축하거나 샘플링하는 사전 정제 과정을 거치게 되었다. 하지만 빅데이터 플랫폼을 활용하면 더 이상 신뢰성을 낮추면서까지 데이터를 정제할 필요가 없어지고, 수집되는 모든 데이터에 대한 다차원 분석을 빠르게 수행할 수 있게 된다. 따라서 본 논문에서는 하드웨어의 한계로 기존 건물에너지 진단 및 분석 시스템에서 제공하지 못했던 다양한 분석 및 진단 서비스들을 빠르고 정확하게 제공하도록 하는 빅데이터 플랫폼 기반 건물 에너지 통합 관리 시스템 설계에 대해 서술한다.
Kim, Young-Sun;Park, Ji-Young;Yoon, Bo-Ram;Lee, Jung-Hyun;Yong, Hwan-Seung
Annual Conference of KIPS
/
2015.10a
/
pp.1272-1275
/
2015
최근 관심이 증대되고 있는 빅데이터 분석 및 처리를 위한 병렬분산처리 시스템은 대용량 서버가 필요하고 인프라 구축을 위해 고비용을 지불해야 한다. 이를 해결하기 위해 본 연구에서는 저렴한 라즈베리 파이로 클러스터를 구성하고, 하둡보다 빠른 속도의 처리를 제공하는 아파치 스파크를 분석 솔루션으로 하는 빅데이터 분석 플랫폼을 구축하였다. 구축한 플랫폼이 빅데이터 활용을 위해 적절한 성능을 보이는지 확인하기 위해 텍스트 마이닝을 수행하였고, 분석 결과 유효한 성능을 보였다. 적절한 비용으로 빅데이터 분석이 가능해지면서 중소기업과 개인, 교육 기관에서도 빅데이터 활용이 가능해지면서 활용 분야가 크게 확대될 것으로 보인다.
The data analysis system using Big-data is worthy to be used in various fields such as politics, traffic, natural disaster, shopping, customer management, medical care, and weather information. Particularly, the analysis of the momentum of an individual using an acceleration signal collected from a wearable device has already been widely used. However, since the data used in such a system stores only the data necessary for measuring the individual activity, it does not provide various analysis results other than the exercise amount of the individual. In this paper, I propose a system that analyzes collective behavior pattern and activity based on the acceleration signal that can be collected from personal smartphones for 24 hours a day and stored in big data. I also propose a system that sends acceleration signals and receives analysis results using standard messaging to use on various smart devices.
Big Data is now seen as a major asset in the company's competitiveness, its influence in the future is expected to grow. Companies that recognize the importance are already actively engaged with Big Data in product development and marketing, which are increasingly applied across sectors of society, including politics, sports. However, lack of knowledge of the system implementation and high costs are still a big obstacles to the introduction of Big Data and systems. It is an objective in this study to build a Big Data system, which is based on open source Hadoop and Hive among Big Data systems, utilizing POS sales data of small and medium-sized offline markets. This approach of convergence is expected to improve existing sales systems that have been simply focusing on profit and loss analysis. It will also be able to use it as the basis for the decisions of the executive to enable prediction of the consumption patterns of customer preference and demand in advance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.